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1. (7 pts total) Let’s consider a spring with mass = 1 grams and spring-strength = 25
grams per second per second. Then the displacement y(t) of the spring from its
equilibrium position satisfies the differential equation

(1 g)
d2y

dt2
+ (25 g/s2)y = Fext(t)

where Fext(t) is the external force applied to the spring at time t. (Note: throughout
this problem, I will work in cgs units. You may ignore units, if you choose.)

(a) (1 pt) If the external force is Fext = 0, what are two linearly independent possible
movements of the spring?
The characteristic equation is r2 + 25 = 0. Thus cos(5t) and sin(5t) are both
solutions.

(b) (2 pt) If the external force is Fext = sin(ωt) dynes, and ω 6= 5 Hz, and the spring
starts at rest (y(0) = 0 and y′(0) = 0), what will its position be after time t?
We guess a particular solution of the form yp = A sin(ωt) + B cos(ωt). Then

−Aω2 sin(ωt)−Bω2 cos(ωt) + 25A sin(ωt) + 25B cos(ωt) = sin(ωt)

and so B = 0 and A = 1/(25− ω2). Putting together with yc allows us to solve
for our initial conditions:

y = c1 sin(5t) + c2 cos(5t) +
1

25− ω2
sin(ωt)

0 = c1 · 0 + c2 · 1 +
1

25− ω2
· 0 = c2

y′ = 5c1 cos(5t)− 5c2 sin(5t) +
ω

25− ω2
cos(ωt)

0 = 5c1 +
ω

25− ω2

c1 = − ω/5
25− ω2

y =
1

125− 5ω2
(−ω sin(5t) + sin(ωt))
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(c) (2 pt) What if ω = 5 Hz? Then what is the general solution to the differential
equation? What is the behavior of the spring as t→∞?
When ω = 5, the guess in part (b) fails (see, for example, the division by 25−ω2).
Thus we guess

yp = At sin(5t) + Bt cos(5t)

and solve:

y′p = A sin(5t) + B cos(5t) + 5At cos(5t)− 5Bt sin(5t)
y′′p = A cos(5t)−B sin(5t) + 5A cos(5t)− 5B sin(5t)− 25At sin(5t)− 25Bt cos(5t)

sin(5t) = y′′p + 25y = 6A cos(5t)− 6B sin(5t)− 25At sin(5t)− 25Bt cos(5t) + 25At sin(5t) + 25Bt cos(5t)
= 6A cos(5t)− 6B sin(5t)

A = 0
B = −1/6

yp = −1
6

t cos(5t)

y = yc + yp = c1 sin(5t) + c2 cos(5t)− 1
6

t cos(5t)

As t → ∞, the bounded yc parts will become very small in comparison to
−1

6 t cos(5t), then the amplitude of the spring’s oscillation will grow linearly
with t.

(d) (1 pt) If we introduce a damping force with coefficient = 6 grams per second,
then the differential equation becomes

(1 g)
d2y

dt2
+ (6 g/s)

dy

dt
+ (25 g/s2)y = Fext(t)

What are two linearly independent solutions in the case when Fext = 0?
The characteristic equation becomes r2+6r+25, which solutions r = −3±4

√
−1.

Thus e−3t sin(4t) and e−3t cos(4t) are both solutions.

(e) (1 pt) In this damped case, can any external force of the form Fext = sin(ωt)
lead to the kind of resonance as in part (c)? Why or why not?
In the damped case, there can be no resonance: the resonance comes from the
extra factor of t required in the guess, which is required because Fext(t) = sin(5t)
is a solution to the homogenous equation. Since no solution to the homogenous
damped equation is of the form sin(ωt), no such external force will ever need an
extra factor of t in the guessed particular solution.
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2. (8 pts total) Consider the linear first-order differential equation

(x− 1)y′ + 2y = g(x)

(a) (1 pt) When g(x) = 0 the equation is separable. Solve this equation for y(x).
We solve:

(x− 1)y′ + 2y = 0

(x− 1)
dy

dx
= −2y

dy

y
=
−2 dx

x− 1
ln y = −2 ln(x− 1) + c

y =
C

(x− 1)2

(b) (2 pt) Let g(x) = x + 3 and solve the differential equation.
This is first-order linear, so we use the method of multiplying by an integrating
factor:

(x− 1)y′ + 2y = x + 3

y′ +
2

x− 1
y =

x + 3
x− 1

e
R

2 dx
x−1 = e2 ln(x−1)

= (x− 1)2(
(x− 1)2y

)′ = (x− 1)2y′ + (x− 1)2
2

x− 1
= (x− 1)2

x + 3
x− 1

= (x− 1)(x + 3)

(x− 1)2y =
∫

(x− 1)(x + 3) dx

=
x3

3
+ x2 − 3x + C

y =
x3

3 + x2 − 3x

(x− 1)2
+

C

(x− 1)2

(c) (2 pt) Now let’s consider power-series solutions. Let y(x) =
∑∞

n=0 cnxn. Write
the left-hand-side of the equation in terms of series, and manipulate the ex-
pression so that it is of the form

∑∞
n=0 Anxn. (So An will be some expression

involving n, cn, cn+1, etc.)
We recall that y′(x) =

∑∞
n=0 ncnxn−1 =

∑∞
n=0(n+1)cn+1x

n. Then the left-hand
side is

xy′−y′+2y = x
∞∑

n=0

ncnxn−1−
∞∑

n=0

(n+1)cn+1x
n+

∞∑
n=0

cnxn =
∞∑

n=0

((n + 2)cn − (n + 1)cn+1) xn
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(d) (1 pt) If g(x) = x + 3, write a recursion relation defining cn+1 in terms of cn.
Hint: The first two formulas, defining c1 in terms of c0 and defining c2 in terms
of c1, are different from the rest of the formulas.
We compare coefficients order-by-order between the expression from (c) and 3 +
x + 0x2 + 0x3 + . . .. The constant terms give 2c0 − c1 = 3 . At order x we have

3c1 − 2c2 = 1 . And, for n ≥ 2, we have (n + 2)cn − (n + 1)cn+1 = 0 .

(e) (1 pt) Find an explicit formula for cn, depending only on n and c0.
We solve the equations from part (d):

c1 = 2c0 − 3

c2 =
3
2
c1 −

1
2

= 3c0 − 5

cn =
n + 1

n
cn−1

=
n + 1

n

n

n− 1
cn−2 =

n + 1
n− 1

cn−2

=
n + 1
n− 2

cn−3

= . . .

=
n + 1

3
c2

= (n + 1)
(

c0 −
5
3

)
(f) (1 pt) Use the formula from part (d), or use any other method, to calculate the

radius of convergence of
∑∞

n=0 cnxn.
We use the ratio test: if limn→∞ |an+1/an| < 1, then

∑
an converges, and if

the limit is larger than 1, then the series diverges. Thus, to study
∑

cnxn, we
compute

lim
n→∞

∣∣∣∣cn+1x
n+1

cnxn

∣∣∣∣ = lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ |x|
But by (c), we have

cn+1

cn
=

n + 2
n + 1

−→
n→∞

1

and so the series converges if |x| < 1 and diverges if |x| > 1; i.e. the radius of
convergence is 1.
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