Math 1B Section 112 Quiz #6

Thursday, 4 October 2007

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf

Name:

- 1. **True or False** (1 pt each) For each of the following statements, decide if it is true or false. You do not need to show work: I will grade only your answers.
 - (a) If a sequence $\{a_n\}_{n=1}^{\infty}$ is strictly *increasing*, and there's a number M bounding the sequence from *above* (i.e. $a_n \leq M$ for every n), then $\lim_{n\to\infty} a_n$ exists. **True** This is the (an equivalent) statement of the monotonic sequences theorem.
 - (b) Let f(x) be a function, and define the sequence a_n = f(n). If lim_{n→∞} a_n = L, then lim_{x→∞} f(x) = L.
 False It's true that if lim_{x→∞} f(x) exists, then this limit equals lim_{n→∞} a_n (which necessarily converges). But just because a sequence converges does not mean that the function converges (e.g. f(x) = sin(πx)).
 - (c) A geometric series converges if and only if the ratio between successive terms is positive.

False The ratio must be strictly more than -1 and strictly less than +1.

2. (3 pts) Use the divergence test to show that the following series diverges. (You will need to actually compute a limit, or explain why the limit is not defined.)

$$\sum_{n=1}^{\infty} \frac{n^3}{2n^3 + 1}$$

We use the divergence test: the limit $\lim_{n\to\infty} \left(\frac{n^3}{2n^3+1}\right) = \lim_{n\to\infty} \left(\frac{1}{2} + \frac{-1/4}{2n^3+1}\right) = \frac{1}{2} + \lim_{n\to\infty} \left(\frac{-1/2}{2n^3+1}\right) = \frac{1}{2} + 0 \neq 0$. Thus, since the limit is not 0, the series necessarily diverges.

3. (4 pts) Sum the following telescoping series:

$$\sum_{n=1}^{\infty} \frac{3}{(3n-2)(3n+1)} = \frac{3}{4} + \frac{3}{28} + \frac{3}{70} + \dots$$

$$\frac{3}{(3n-2)(3n+1)} = \frac{1}{3n-2} - \frac{1}{3n+1}$$
$$\sum_{n=1}^{\infty} \frac{3}{(3n-2)(3n+1)} = \frac{1}{1} - \frac{1}{4} + \frac{1}{4} - \frac{1}{7} + \frac{1}{7} - \frac{1}{10} + \dots$$
$$= 1$$