Math 1B Section 112 Quiz #9

Thursday, 25 October 2007

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf

Name:

1. (3 pts) Write

$$\sum_{n=1}^{\infty} \frac{x^{n-1}}{n^2 + n} = \frac{1}{2} + \frac{x}{6} + \frac{x^2}{12} + \frac{x^3}{20} + \frac{x^4}{30} + \frac{x^5}{42} + \dots$$

in terms of elementary functions. (*Hint: Partial fractions*) For what values of x is your solution justified?

This problem was a worksheet problem that I ran out of space for. I was interested in seeing how folks would solve it. Ultimately I decided to make the problem out of 2 points.

We can start by finding the interval of convergence (if the series doesn't converge, then any manipulations we do won't be justified). By the ratio test, this series converges if

$$\lim_{n \to \infty} \left| \frac{x^n}{(n+1)^2 + (n+1)} \frac{n^2 + n}{x^{n-1}} \right| = |x| < 1$$

Moreover, by comparison with $\sum 1/n^2$, this series converges absolutely at the endpoints ± 1 . (If you got this far, I gave 2 points; 1 for radius of convergence.)

How do you write the series in terms of nice functions?

$$\frac{1}{n^2 + n} = \frac{1}{n} - \frac{1}{n+1} \text{ by partial fractions}$$

$$\sum_{n=1}^{\infty} \frac{x^{n-1}}{n^2 + n} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n} - \sum_{n=1}^{\infty} \frac{x^{n-1}}{n+1}$$

$$= \frac{1}{x} \int_0^x \sum_{n=1}^{\infty} t^n dt - \frac{1}{x^2} \sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1}$$

$$= \frac{1}{x} \int_0^x \frac{dt}{1-t} - \frac{1}{x^2} \sum_2^\infty \frac{x^n}{n}$$

$$= -\frac{1}{x} \ln(1-x) - \frac{1}{x^2} \left(-x + \sum_1^\infty \frac{x^n}{n} + 1 + \frac{1}{x^2} \ln(1-x) \right)$$

This argument is justified whenever everything is defined and all the sub-series converge. I.e. not at x = 1 or x = 0. But we can interpret $-\frac{1}{x}\ln(1-x) + \frac{1}{x} + \frac{1}{x^2}\ln(1-x)$ as being 1/2 when x = 0 (this is the limit, in any case), and the x = 1 end-point must be correct by continuity.

2. (3 pts) Find the Taylor series expansion of cos(x) centered at $c = \pi/2$. What is the interval of convergence for this series?

There is a sneaky way to do this problem:

$$\cos(x) = -\sin(x - \pi/2) = -\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (x - \pi/2)^{2n+1}$$
, which converges everywhere.

But here's the non-sneaky way:

n	$\cos^{(n)}(x)$	$\sin^{(n)}(\frac{\pi}{2})$
0	$\cos(x)$	0
1	$-\sin(x)$	-1
2	$-\cos(x)$	0
3	$\sin(x)$	1
4	$\cos(x)$	0
5	$-\sin(x)$	-1
6	$-\cos(x)$	0
7	$\sin(x)$	1
÷	:	:
2n		0
2n + 1		$(-1)^{n+1}$
÷	•	

Thus, the Taylor series for $\sin(x)$ centered at $\pi/2$ is

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} \left(x - \frac{\pi}{2}\right)^{2n+1}$$

and the ratio test gives that this converges everywhere.

- 3. (4 pts) For the following power series
 - (a) find the general *n*th term (i.e. write it as $\sum_{n=0}^{\infty}$ (something)
 - (b) find the radius of convergence
 - (c) check whether the series converges at the endpoints

so that you can determine for which x the series

- converges absolutely
- converges conditionally
- diverges.

$$\frac{1}{4} + \frac{2x}{9} + \frac{3x^2}{16} + \frac{4x^3}{25} + \frac{5x^4}{36} + \frac{6x^5}{49} + \dots$$

We recognize the pattern as $\sum_{n=0}^{\infty} \frac{n+1}{(n+2)^2} x^n$. Then the ratio test gives

$$\lim_{n \to \infty} \left| \frac{(n+2)x^{n+1}}{(n+3)^2} \times \frac{(n+2)^2}{(n+1)x^n} \right| = \lim_{n \to \infty} \frac{(n+2)^3}{(n+1)(n+3)^2} |x| = 1 \cdot |x|$$

So this series converges absolutely when |x| < 1 and diverges when |x| > 1.

Checking endpoints, we see that when x = -1 the series converges by the alternating series test. At x = 1 the series diverges (for instance, by limit comparison test with $\sum \frac{1}{n}$). Thus, the convergence at x = -1 must be conditional.