Math 1B Section 112 Quiz #9

Thursday, 25 October 2007

GSI: Theo Johnson-Freyd
http://math.berkeley.edu/~theojf

Name:

1. (3 pts) Write
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in terms of elementary functions. (Hint: Partial fractions) For what values of z is
your solution justified?

This problem was a worksheet problem that I ran out of space for. I was interested
i seeing how folks would solve it. Ultimately I decided to make the problem out of 2
points.

We can start by finding the interval of convergence (if the series doesn’t converge, then
any manipulations we do won’t be justified). By the ratio test, this series converges
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Moreover, by comparison with Y. 1/n?, this series converges absolutely at the end-
points +1. (If you got this far, I gave 2 points; 1 for radius of convergence.)

How do you write the series in terms of nice functions?
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This argument is justified whenever everything is defined and all the sub-series
converge. L.e. not at = 1 or x = 0. But we can interpret — In(1—x) —|—1—|—% In(1—x)
as being 0 when x = 0 (this is the limit, in any case), and the = 1 end-point must
be correct by continuity.



2. (3 pts) Find the Taylor series expansion of sin(z) centered at ¢ = w/2. What is the
interval of convergence for this series?

There is a sneaky way to do this problem:
sin(z) = cos (z — 7/2) = Z (

n=0

_1)71

(2n)! (v — 7T/2)2n , which converges everywhere.

But here’s the non-sneaky way:

n sin( (z) | sin(™ (%)
0 sin(x) 1

1 cos(x) 0

2 —sin(x) -1
3 — cos(x)

4 sin(z) 1

5 cos(x) 0

6 —sin(x) -1
7 — cos(x) 0
2n (="

2n+1 0

Thus, the Taylor series for sin(x) centered at 7/2 is
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and the ratio test gives that this converges everywhere.



3. (4 pts) For the following power series

(a) find the general nth term (i.e. write it as >, ;(something)
(b) find the radius of convergence

(c) check whether the series converges at the endpoints
so that you can determine for which x the series

e converges absolutely

e converges conditionally

e diverges.
4 9 16 25 36 49 7
= n+1
We recognize the pattern as Z ———a". Then the ratio test gives
n=0 (TL + 2)2
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lim (n +2) X (n+2) = lim (n+2) || =1 ||
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So this series ’ converges absolutely when |x| < 1 ‘ (md’ diverges when |x| > 1 ‘

Checking endpoints, we see that when x = —1 the series converges by the alternating
series test. At ’ x =1 the series diverges‘ (for instance, by limit comparison test with

> %) Thus, ’ the convergence at x = —1 must be conditional‘.




