Math 1B Quiz #13

Thursday, 29 November 2007

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf

Name:

1. (7 pts total) Let's consider a spring with mass = 1 grams and spring-strength = 25 grams per second per second. Then the displacement y(t) of the spring from its equilibrium position satisfies the differential equation

$$(1 \text{ g})\frac{d^2y}{dt^2} + (25 \text{ g/s}^2)y = F_{\text{ext}}(t)$$

where $F_{\text{ext}}(t)$ is the external force applied to the spring at time t. (Note: throughout this problem, I will work in cgs units. You may ignore units, if you choose.)

- (a) (1 pt) If the external force is $F_{\text{ext}} = 0$, what are two linearly independent possible movements of the spring?
- (b) (2 pt) If the external force is $F_{\text{ext}} = \sin(\omega t)$ dynes, and $\omega \neq 5$ Hz, and the spring starts at rest (y(0) = 0 and y'(0) = 0), what will its position be after time t?

(c) (2 pt) What if $\omega = 5$ Hz? Then what is the general solution to the differential equation? What is the behavior of the spring as $t \to \infty$?

(d) (1 pt) If we introduce a damping force with coefficient = 6 grams per second, then the differential equation becomes

$$(1 g)\frac{d^2y}{dt^2} + (6 g/s)\frac{dy}{dt} + (25 g/s^2)y = F_{\text{ext}}(t)$$

What are two linearly independent solutions in the case when $F_{\text{ext}} = 0$?

(e) (1 pt) In this damped case, can any external force of the form $F_{\text{ext}} = \sin(\omega t)$ lead to the kind of resonance as in part (c)? Why or why not?

2. (8 pts total) Consider the linear first-order differential equation

$$(x-1)y'+2y=g(x)$$

(a) (1 pt) When g(x) = 0 the equation is separable. Solve this equation for y(x).

(b) (2 pt) Let g(x) = x + 3 and solve the differential equation.

(c) (2 pt) Now let's consider power-series solutions. Let $y(x) = \sum_{n=0}^{\infty} c_n x^n$. Write the left-hand-side of the equation in terms of series, and manipulate the expression so that it is of the form $\sum_{n=0}^{\infty} A_n x^n$. (So A_n will be some expression involving n, c_n, c_{n+1} , etc.)

(d) (1 pt) If g(x) = x + 3, write a recursion relation defining c_{n+1} in terms of c_n . Hint: The first two formulas, defining c_1 in terms of c_0 and defining c_2 in terms of c_1 , are different from the rest of the formulas.

- (e) (1 pt) Find an explicit formula for c_n , depending only on n and c_0 .
- (f) (1 pt) Use the formula from part (d), or use any other method, to calculate the radius of convergence of $\sum_{n=0}^{\infty} c_n x^n$.