Math 32 Discussion Problems

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Fall32/

Thursday 9th October, 2008

Exponential Functions

- 1. Use the fact that $2^{10} \approx 10^3$ to estimate 2^{60} and 4^{40} . In fact, $2^{10} = 1024$, so $2^{10}/10^3 \approx 1.02$. Use this estimate to estimate 2^{20} , 2^{30} , and 2^{60} correct to three significant figures.
- 2. Simplify the following expressions:
 - (a) $((\sqrt{2})^{\sqrt{2}})^{\sqrt{2}}$ (b) $(3^{2+\sqrt{5}})(3^{2-\sqrt{5}})$ (c) $10^{\pi+2}/10^{\pi-2}$ (e) $((\sqrt{5})^{3/2})^4$
- 3. Solve each equation:

(a) $2^x = 32$ (b) $2^t = 1/4$ (c) $2^{3y+1} = \sqrt{2}$ (e) $8^{z+1} = 32\sqrt{2}$

- 4. Graph each function, marking domain, range, and asymptotes:
 - (a) $y = -3^{x} + 3$ (b) $y = 3^{-x} 3$ (c) $y = 2^{x-1} 1$ (e) $y = 1 3^{x-1}$

5. Let $f(x) = 1 + a^x$ for some fixed constant a. Show that $\frac{1}{f(x)} + \frac{1}{f(-x)} = 1$.

- 6. Let $c(x) = (a^x + a^{-x})/2$ and $s(x) = (a^x a^{-x})/2$ for some fixed constant a.
 - (a) Compute $(c(x))^2 (s(x))^2$.
 - (b) Express $(c(x))^2 + (s(x))^2$ and 2c(x)s(x) in terms of c(2x) and s(2x).
 - (c) Calculate c(0) an s(0). Determine whether each function c(x) and s(x) is even (symmetric across the *y*-axis) or odd (symmetric across the origin).
- 7. Given that the graph of $y = ab^x$ passes through (0, 2) and (3, 5), find y when x = 6.
- 8. In this problem, you'll prove that exponential functions grow faster than polynomial functions. Let $f(x) = a^x$ where a > 1 is a constant.
 - (a) Prove that for all x > 0 we have $f(x) > x^0$.
 - (b) Calculate the average rate of change $\frac{f(x+h) f(x)}{h}$. In particular, when h = 1, what is f(x+1) f(x)?
 - (c) Thus, show that when x > 1, we definitely have f(x) > (a 1)x.
 - (d) Let b be any fixed unknown number. By solving the inequality (a-1)x > b, find a number X (depending on a and b) so that if x > X we definitely have f(x) > b.
 - (e) Conclude that when $x > x_1$, we have f(x) > (a-1)bx.
 - (f) In particular, when b = 1/(a-1), there's a constant x_2 depending on a so that when $x > x_1$ we definitely have $f(x) > x^1$. In terms of x_1 , for each positive integer n find a number x_n so that if $x > x_n$, then $f(x) > x^n$. (Hint: what happens when you take nth powers of the inequality f(x) > x?)
 - (g) Let $p(x) = p_n x^n + p_{n-1} x^{n-1} + \dots + p_1 x + p_0$ be a polynomial. Show that when $x > 1 + |p_0| + |p_1| + \dots + |p_n|$, then $x^{n+1} > p(x)$. Conclude that there is some number P so that if x > P, then f(x) > p(x). Thus, exponential functions grow faster than polynomial functions.