Math 32 Discussion Problems

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Fall32/

Thursday 30^{th} October, 2008

More on trig functions

- 1. A half-circle centered at O with diameter \overline{AB} is divided by a radius \overline{OC} , where $\angle BOC = \theta$. Find the areas of the two sectors of the circle in terms of θ and the radius r. Find the product of the two areas, and find the value of θ that maximizes this product.
- 2. If $\cot \theta = -1/\sqrt{3}$ and $\cos \theta < 0$, compute $\csc \theta$ and $\sin \theta$.
- 3. Evaluate the following trigonometric functions, using the fact that $\cos t = \cos(t + 2\pi)$ and $\sin t = \sin(t + 2\pi)$:
 - (a) $\sin(17\pi/4)$ (c) $\cos 11\pi$ (e) $\tan(-7\pi/4)$ (g) $\sec(\frac{11\pi}{6}+2\pi)$
 - (b) $\sin(-17\pi/4)$ (d) $\cos(53\pi/4)$ (f) $\cos(7\pi/4)$ (h) $\csc(2\pi \frac{\pi}{3})$
- 4. Prove the following identities:

(a)
$$\sin^2 t - \cos^2 t = \frac{1 - \cot^2 t}{1 + \cot^2 t}$$

(b)
$$\frac{1 + \tan s}{1 - \tan s} = \frac{\sec^2 s + 2\tan s}{2 - \sec^2 s}$$

(c)
$$(\tan \theta)(1 - \cot^2 \theta) + (\cot \theta)(1 - \tan^2 \theta) = 0$$

(d)
$$\cot \theta + \tan \theta + 1 = \frac{\cot \theta}{1 - \tan \theta} + \frac{\tan \theta}{1 - \cot \theta}$$

- 5. Show that $\sin\theta\cos\theta \le 1/2$ for every θ . For what θ values is this an equality? Hint: use the fact that $\sqrt{ab} \le (a+b)/2$ when a and b are positive real numbers, with equality only when a = b, with $a = \sin^2\theta$ and $b = \cos^2\theta$. Then use the fact that $x \le |x|$ for any real number x.
- 6. (a) What is the period of the function $\sin x$ for x a real number?
 - (b) What is the period of the function $\sin(2x)$? $\sin(\pi x)$? Hint: the period of x is the smallest positive number p so that f(x) = f(x+p) for every x. We know that $\sin y = \sin(y+2\pi)$, so plug in x + p for x, and solve for p.
 - (c) What are all the zeros of the sine function?
 - (d) For what values of x is $\sin x$ increasing? Decreasing?
- 7. Graph $\sin^{-1}(\sin x)$, where \sin^{-1} is the inverse-sine function, defined as having domain $x \in [-1, 1]$ and outputting the unique number $y \in [-\pi, \pi]$ such that $x = \sin y$.
- 8. If x_0 is one solution to $\sin x = a$, which of the following are also solutions?
 - (a) $x_0 + 2\pi$ (c) $x_0 2\pi$ (c) $x_0 \pi$ (d) $x_0 + 6\pi$
 - (b) $x_0 + \pi$ (d) $2\pi x_0$ (d) πx_0 (e) $5\pi x_0$