Math 32 Discussion Problems

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Fall32/

Tuesday 4th November, 2008

More on trig functions

- 1. (a) What is the period of the function $\sin x$ for x a real number?
 - (b) What is the period of the function $\sin(2x)$? $\sin(\pi x)$? Hint: the period of x is the smallest positive number p so that f(x) = f(x+p) for every x. We know that $\sin y = \sin(y+2\pi)$, so plug in x + p for x, and solve for p.
 - (c) What are all the zeros of the sine function?
 - (d) For what values of x is $\sin x$ increasing? Decreasing?
- 2. If x_0 is one solution to $\sin x = a$, which of the following are also solutions?
 - (a) $x_0 + 2\pi$ (c) $x_0 2\pi$ (c) $x_0 \pi$ (d) $x_0 + 6\pi$
 - (b) $x_0 + \pi$ (d) $2\pi x_0$ (d) πx_0 (e) $5\pi x_0$

3. Let \sin^{-1} is the inverse-sine function, defined as having domain $x \in [-1, 1]$ and outputting the unique number $y \in [-\pi/2, \pi/2]$ such that $x = \sin y$. Let \cos^{-1} be the inverse-cosine function, with domain $x \in [-1, 1]$ and outputting the unique number $y \in [0, \pi]$ such that $x = \cos y$. Graph the following functions:

- (a) $\sin^{-1}(\sin x)$ (b) $\sin(\sin^{-1} x)$ (c) $\cos^{-1}(\cos x)$ (d) $\cos(\cos^{-1} x)$
- 4. Let \tan^{-1} be the inverse-tangent function, defined as outputting the unique $y \in [-\pi/2, \pi/2]$ such that $x = \tan y$.
 - (a) What is the domain of \tan^{-1} ? What is the range?
 - (b) Graph $\tan^{-1}(\tan x)$ and $\tan(\tan^{-1} x)$.
 - (c) Show that $\cot(\tan^{-1} x) = 1/x$ for every $x \neq 0$.
- 5. (a) Show that if $x \in [-1, 1]$, then $\cos(\sin^{-1} x) = \sqrt{1 x^2} = \sin(\cos^{-1} x)$.
 - (b) Evaluate $\tan(\sin^{-1} x)$ and $\tan(\cos^{-1} x)$.
 - (c) Find $\sin(\tan^{-1} x)$ and $\cos(\tan^{-1} x)$.
- 6. Graph the following functions. Indicate the *x*-intercepts and the coordinates of the highest and lowest points.
 - (a) $\sin(x \pi/6)$ (c) $\sin(2x \pi/2)$ (c) $3\sin(x/2 + \pi/6)$ (d) $\frac{1}{2}\sin(\pi x/2 \pi^2)$ (b) $-\cos(x + \pi/4)$ (d) $\cos(2x - \pi)$ (d) $4\cos(3x - \pi/4)$ (e) $1 - \cos(2x - \pi/3)$
- 7. Show that $\sin\theta\cos\theta \le 1/2$ for every θ . For what θ values is this an equality? Hint: use the fact that $\sqrt{ab} \le (a+b)/2$ when a and b are positive real numbers, with equality only when a = b, with $a = \sin^2\theta$ and $b = \cos^2\theta$. Then use the fact that $x \le |x|$ for any real number x.

- 8. (a) Let f(x) = sin x cos x. It's a fact, supported by plotting points, that f(x) is sinosoidal. Find f(0), f(π/6), f(π/4), f(π/3), f(π/2), f(3π/4), and f(π), and graph these points. Use this and the above function to guess the amplitude, frequency, and phase shift of f(x); i.e. find constants A, B, and C based on your graph that make f(x) = A sin(Bx C).
 - (b) The function $g(x) = \sin^2 x$ is also sinosoidal. Plot points g(0), $g(\pi/6)$, $g(\pi/4)$, $g(\pi/3)$, $g(\pi/2)$, $g(3\pi/4)$, and $g(\pi)$, etc., until you have enough data to guess the amplitude, frequency, phase shift, and vertical translation, so that you can write $g(x) = A \sin(Bx C) + D$. Since $\sin^2 x = 1 \cos^2 x$, use your answer to find the amplitude, frequency, phase shift, and vertical translation for $h(x) = \cos^2 x$, and check your answer by plotting points.
- 9. Graph each function, specifying the intercepts and asymptotes. Hint: any problem about sec and csc is really about cos and sin.

(a)
$$\sec x$$
 (c) $\csc(x - \pi/6)$ (c) $-\frac{1}{2}\csc(2\pi x)$ (d) $\sec(x+1)$

- (b) $\csc x$ (d) $2 \csc x$ (e) $-2 \sec x$ (e) $-2 \sec(\pi x/3)$
- 10. When we defined the inverse sine, cosine, and tangent) functions, we had to limit the domains of sine, cosine, and tangent. There was always a best choice for how to limit the domain: we always chose the largest continuous domain of sine, cosine, or tangent that contained 0 on which the function was one-to-one.
 - (a) Does this method work to define the secant-inverse function \sec^{-1} ? Graph $y = f(x) = \cos^{-1}(1/x)$ and specify the domain and range. Prove that f(x) is an inverse function to $\sec(x)$, by calculating $f(\sec(x))$ and $\sec(f(x))$.
 - (b) Does this method work to define the cosecant-inverse function \csc^{-1} ? Graph $y = g(x) = \csc^{-1}(1/x)$ and specify the domain and range. Prove that g(x) is an inverse function to $\csc(x)$, by calculating $g(\csc(x))$ and $\csc(g(x))$.