Math 53 Quiz 4

29 February 2008

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/

Name:			
TD: (: 1)	10.10 1.00	2.10 4.00	
Time (circle one):	12:10 - 1:00	3:10 - 4:00	

Consider the ellipsoid

 $5 = 2x^2 + 2y^2 + z^2 + 2xy - 2xz$

This defines z implicitly as a function of x and y.

- a. (4 pts) Using implicit differentiation, find $\frac{\partial z}{\partial x}$ as functions of x, y, and z.
 - I.e., think of x and y as independent variables, so $\frac{\partial y}{\partial x} = 0$, whereas z is a dependent variable, so $\frac{\partial z}{\partial x}$ is probably non-zero (of course, $\frac{\partial x}{\partial x} = 1$ always). Then use the product rule to differentiate the equation with respect to x, and solve the resulting equation for $\frac{\partial z}{\partial x}$.
- b. (3 pts) Is the point (x,y) = (1,0) in the domain of z(x,y)? If so, find all possible values z(1,0), and hence all possible values of $\frac{\partial z}{\partial x}(1,0)$.
- c. (3 pts) Is the point (x,y)=(1,2) in the domain of z(x,y)? If so, find all possible values z(1,0), and hence all possible values of $\frac{\partial z}{\partial x}(1,2)$.

Please use extra paper as necessary. For each part, partial credit will be assigned based on correct work (you do need to show some work, enough so that I know how you solved the problem). Please simplify and box your answers.