# Math 1B Handout: Estimating Integrals by Sums 

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Summer1B/

Wednesday, 13 August 2008

To approximate $\int_{a}^{b} f(x) d x$, let $\Delta x=(b-a) / n, x_{i}=a+i \Delta x$, and $\bar{x}_{i}=\left(x_{i-1}+\right.$ $\left.x_{i}\right) / 2$. Then define the following approximations (we use different number from Stewart for Simpson's Rule $S_{n}$ ):

$$
\begin{aligned}
L_{n} & =\left(f\left(x_{0}\right)+\cdots+f\left(x_{n-1}\right)\right) \Delta x \\
R_{n} & =\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right) \Delta x \\
T_{n} & =\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) \frac{\Delta x}{2} \\
M_{n} & =\left(f\left(\bar{x}_{1}\right)+\cdots+f\left(\bar{x}_{n}\right)\right) \Delta x \\
S_{n} & =\left(f\left(x_{0}\right)+4 f\left(\bar{x}_{1}\right)+2 f\left(x_{1}\right)+4 f\left(\bar{x}_{2}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+4 f\left(\bar{x}_{n}\right)+f\left(x_{n}\right)\right) \frac{\Delta x}{6}
\end{aligned}
$$

These have the following errors:

$$
\begin{aligned}
\left|E_{L}\right|,\left|E_{R}\right| & \leq \sup _{x \in[a, b]}\left|f^{\prime}(x)\right| \frac{(b-a)^{2}}{2 n} \\
\left|E_{T}\right|, 2\left|E_{M}\right| & \leq \sup _{x \in[a, b]}\left|f^{\prime \prime}(x)\right| \frac{(b-a)^{3}}{12 n^{2}} \\
\left|E_{S}\right| & \leq \sup _{x \in[a, b]}\left|f^{(4)}(x)\right| \frac{(b-a)^{5}}{180 n^{4}}
\end{aligned}
$$

1. Let $f(x)$ be a positive increasing function with negative second derivative on $[a, b]$. Place the following five numbers in increasing order: $L_{n}, R_{n}, T_{n}, M_{n}$, and $\int_{a}^{b} f(x) d x$.
2. If you evaluate each of the following integrals using each of the Midpoint, Trapezoid, and Simpson Rules with 5 subintervals, what is your expected error? How many subintervals do you need to take to get an error less than 0.00001 ?
(a) $\int_{0}^{\frac{1}{2}} \sin ^{2} x d x$
(b) $\int_{0}^{3} \frac{d t}{1+t+t^{4}}$
(c) $\int_{0}^{4} \sqrt{1+\sqrt{x}} d x$
3. Show that $\left(T_{n}+M_{n}\right) / 2=T_{2 n}$. Show that $\left(T_{n}+2 M_{n}\right) / 3=S_{n}$.
4. By explicit calculation, show that Simpson's rule calculates the area under a cubic curve exactly. What are the highest degree polynomials the rest of the approximation rules calculate exactly?
5. By explicit calculation, show that the errors for $L_{n}$ and $R_{n}$ are exact when $f(x)$ is a linear function, and that the errors for $T_{n}$ and $M_{n}$ are exact when $f(x)$ is a quadratic function.
6. Every polynomial can be exactly integrated. Do this! Evaluate:

$$
\int_{0}^{1}\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right) d x
$$

But not every rational function can be exactly integrated: $\int_{1}^{x} \frac{d t}{t}=\ln (x)$ and $\int_{0}^{x} \frac{d t}{1+x^{2}}=$ $\arctan (x)$, neither of which are rational functions.
However, even after we've invented all the trigonometric and exponential functions, and accurately computed their values into a table, so that we can easily compose them, there are still functions that are hard to integrate. For instance, it is a theorem that $e^{x^{2}}$ does not have an integral that is expressible in elementary functions, and yet it turns up all the time, especially in statistics. So let's invent a new function, called the "Gaussian":

$$
G(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

(a) In terms of $G(x)$, evaluate

$$
\int_{a}^{1} \sqrt{\ln \frac{1}{y}} d y
$$

where $a$ is some given number with $0<a<1$.
(b) Pick your favorite approximation technique. How many numbers would you need to add together to compute $G(1)$ to within a tenth-of-a-percent error (0.001)?

