Math 1B Handout: Power Series

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Summer1B/

Monday, 4 August 2008

If a power series $\sum_{n=0}^{\infty} c_n x^n$ has radius of convergence R > 0, then the integral $C + \sum_{n=0}^{\infty} c_n x^{n+1}/(n+1) = C + \sum_{n=1}^{\infty} c_{n-1} x^n/n$ and the derivative $\sum_{n=0}^{\infty} n c_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) c_{n+1} x^n$ also have radius of convergence equal to R. Endpoints are subtler: if $\sum c_n x^n$ converges at an endpoint, then so does its integral, and if it diverges at an endpoint, then so does its derivative.

Remember that we have the following power series representation:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$

- 1. (a) Write down the power series expansion of f(x) = 1/(1+x).
 - (b) Integrate both sides of your equation from part (a) to get a power series expansion of $\ln(1+x)$. What is the radius of convergence? Does this function converge at the endpoints? Use this to write down a series for $\ln(2)$.
 - (c) What is the integral of $\ln(1+x)$ in terms of functions (not power series)? Now, use the power series from (b) to get a power series for this integral. How does this compare to the power series you get if you integrate the series in (b)?
- 2. Integrate the power series for $1/(1+x^2)$. What's the radius of convergence of your series? Does it converge at the endpoints? What equation do you get when you substitute x = 1? What about when $x = 1/\sqrt{3}$?
- 3. Find a power series representation for the function and determine the interval of convergence:

(a)
$$\frac{3}{1-x^4}$$

(c)
$$\frac{x}{4x+1}$$

(b)
$$\frac{1}{1+9x^2}$$

(d)
$$\frac{x^2}{a^3 - x^3}$$

4. By differentiating, find a power series representation for the function:

(a)
$$\frac{1}{(1-x)^2}$$

(d)
$$\frac{1}{(1+x^2)^2}$$

(b)
$$\frac{1}{(1-x)^3}$$

(e)
$$\frac{1}{(1+x^2)^3}$$

$$(c) \ \frac{1}{(1-x)^n}$$

(f)
$$\frac{1}{(1+x^2)^n}$$

- 5. What is the lower series of $\ln(1-x)$? What about $x \ln(1-x)$? Convince yourself that any integral of $x \ln(1-x)$ is a polynomial times $\ln(1-x)$. What about if $\ln(1-x)$ is replaced by $\arctan(x)$?
- 6. Show that

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

is a solution to the differential equation f'' + f = 0. What is the function?

7. Use partial fractions to express the function

$$\frac{5x+1}{x^2-3x+2}$$

as a sum of power series. What is the interval of convergence?

- 8. (a) What power series do you get if you differentiate the power series for 1/(1-x)?
 - (b) What power series do you get if you differentiate again?
 - (c) How would you write $\sum_{n=0}^{\infty} n^2 x^n$ as a function?
 - (d) If p(x) is any polynomial, use the ratio test to determine the radius of convergence of $\sum_{n=0}^{\infty} p(n)x^n$. Does this converge on the boundary?
 - (e) Come up with a method that you could use to write $\sum_{n=0}^{\infty} p(n)x^n$ as a function for any given polynomial p(n). For example, what is $\sum_{n=0}^{\infty} (3n^2 4n + 1)x^n$?