Math 1B Handout: ay'' + by' + cy = g(t)

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Summer1B/

Tuesday, 15 July 2008

Nonhomogeneous linear equations, undetermined coefficients

A differential equation of the form ay'' + by' + cy = g(t) has a two-parameter family of solutions, but the solution space is not a linear space. Instead, if $z_1(t)$ and $z_2(t)$ are solutions to ay'' + by' + cy = g(t), then $z_1(t) - z_2(t)$ is a solution to ay'' + by' + cy = 0. This is called the "complementary equation". Thus, to solve ay'' + by' + cy = g(t), find the general solution $c_1y_1(t) + c_2y_2(t)$ to ay'' + by' + cy = 0 and find some solution y_p to ay'' + by' + cy = g(t); then the general solution to ay'' + by' + cy = g(t) is $y_p + c_1y_1(t) + c_2y_2(t)$.

Some functions — notably, polynomials, exponentials, and trigonometric functions — have the property that they have finitely many linearly independent derivatives. In this case, chances are that some combination of the derivatives will provide a particular solution to the general equation. By guessing that a particular solution is some such combination, and then solving for the unknown coefficients, one can usually find the desired particular solution. Of course, the general solution is given by a particular solution, plus the general solution to the complementary equation. The guesses one should make:

- If $g(t) = e^{kt}p(t)$, where p is a polynomial of degree n, guess $y_p(t) = e^{kt}q(t)$, where q is a degree-n polynomial with undetermined coefficients.
- If $g(t) = e^{kt}p(t)\cos mt$ or $e^{kt}p(t)\cos mt$, guess $y_p(t) = e^{kt}q(t)\cos mt + e^{kt}r(t)\sin mt$.
- If $g(t) = g_1(t) + g_2(t)$, it might be simpler to solve each equation $ay'' + by' + cy = g_1(t)$ and $ay'' + by' + cy = g_2(t)$ separately, and add the answers.
- If any y(t) of the form of the guess $y_p(t)$ is itself a solution to the complementary equation ay'' + by' + cy = 0, you may have to multiply those terms by t or t^2 .
- 1. Find the general solution to the differential equation:
 - (a) $y'' + 9y = e^{3t}$
 - (b) y'' + 6y' + 9y = 1 + t
 - (c) $y'' + 6y' + 9y = t^2 e^{-3t}$
- 2. What trial solutions would you use for the differential equation ay'' + by' + cy = g(x), if you use the method of "undetermined coefficients"?

- (a) $g(t) = \sinh(t)$
- (b) $g(t) = \sin(t)\cos(2t)$
- (c) $g(t) = \tan(t)\sin(2t)$
- 3. (a) If you know trial solutions for $ay'' + by' + cy = g_1(t)$ and $ay'' + by' + cy = g_2(t)$, what is a trial solution for $ay'' + by' + cy = g_1(t) + g_2(t)$?
 - (b) What about for $ay'' + by' + cy = g_1(t)g_2(t)$?