Math 1B Handout: ay'' + by' + cy = g(t)

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Summer1B/

Wednesday, 16 July 2008

Undetermined coefficients

- If $g(t) = e^{kt}p(t)$, where p is a polynomial of degree n, guess $y_p(t) = e^{kt}q(t)$, where q is a degree-n polynomial with undetermined coefficients.
- If $g(t) = e^{kt}p(t)\cos mt$ or $e^{kt}p(t)\cos mt$, guess $y_p(t) = e^{kt}q(t)\cos mt + e^{kt}r(t)\sin mt$.
- If $g(t) = g_1(t) + g_2(t)$, it might be simpler to solve each equation $ay'' + by' + cy = g_1(t)$ and $ay'' + by' + cy = g_2(t)$ separately, and add the answers.
- If any y(t) of the form of the guess $y_p(t)$ is itself a solution to the complementary equation ay'' + by' + cy = 0, you may have to multiply those terms by t or t^2 .
- 1. Find the general solution to the differential equation:
 - (a) $y'' + 9y = e^{3t}$
 - (b) y'' + 6y' + 9y = 1 + t
 - (c) $y'' + 6y' + 9y = t^2 e^{-3t}$
- 2. What trial solutions would you use for the differential equation ay'' + by' + cy = g(x), if you use the method of "undetermined coefficients"?
 - (a) $g(t) = \sinh(t)$
 - (b) $g(t) = \sin(t)\cos(2t)$
 - (c) $g(t) = \tan(t)\sin(2t)$
- 3. (a) If you know trial solutions for $ay'' + by' + cy = g_1(t)$ and $ay'' + by' + cy = g_2(t)$, what is a trial solution for $ay'' + by' + cy = g_1(t) + g_2(t)$?
 - (b) What about for $ay'' + by' + cy = g_1(t)g_2(t)$?

Variation of parameters

We're trying to solve ay'' + by' + cy = g(t). Let $y_1(t)$ and $y_2(t)$ be linearly independent solutions to the complementary equation ay'' + by' + cy = 0. If c_1 and c_2 are any constants, then $y(t) = c_1y_1(t) + c_2y_2(t)$ satisfies ay'' + by' + cy = 0. If $u_1(t)$ and $u_2(t)$ are almost constants and $y(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$, then we expect that ay'' + by' + cy is almost zero. More generally, $y_1(t)$ and $y_2(t)$ provide a convenient basis for the differential equation, so we should look for a particular solution of the form $y(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$.

$$\begin{split} y(t) &= u_1(t) y_1(t) + u_2(t) y_2(t) \\ y'(t) &= u'_1(t) y_1(t) + u_2(t)' y_2(t) + u_1(t) y'_1(t) + u_2(t) y'_2(t) \\ y''(t) &= u''_1(t) y_1(t) + u''_2(t) y_2(t) + 2u'_1(t) y'_1(t) + u_2(t) y''_2(t) \\ ay''(t) + by'(t) + cy(t) &= u_1(t) \left[ay''_1(t) + by'_1(t) + cy_1(t) \right] + u_2(t) \left[ay''_2(t) + by'_2(t) + cy_2(t) \right] + u_1'(t) \left[2ay'_1(t) + by_1(t) \right] + u'_2(t) \left[2ay'_2(t) + by_2(t) \right] + u'_1(t) \left[2ay'_1(t) + u''_2(t) y_2(t) \right] \\ &= 0 + 0 + u'_1(t) \left[2ay'_1(t) + by_1(t) \right] + u'_2(t) \left[2ay'_2(t) + by_2(t) \right] + u''_1(t) y_1(t) + u''_2(t) y_2(t) \right] \\ &= b \left[u'_1(t) y_1(t) + u''_2(t) y_2(t) \right] \\ &= b \left[u'_1(t) y_1(t) + u''_2(t) y_2(t) \right] + a \left[u''_1(t) y_1(t) + u'_2(t) y_2(t) \right]' + u''_1(t) y''_1(t) + u''_2(t) y''_2(t) \right] \end{split}$$

If we can find $u_1(t)$ and $u_2(t)$ such that $u'_1(t) y_1(t) + u'_2(t) y_2(t) = 0$, then our equation would simplify to $a [u'_1(t) y'_1(t) + u'_2(t) y'_2(t)] = g(t)$. Thus, we win if we can find u_1 and u_2 satisfying both these equations. Solving the equations in u'_1 and u'_2 gives

$$u_1'(t) = \frac{g(t) y_1(t)}{a (y_1(t) y_2'(t) - y_2(t) y_1'(t))}$$

$$u_2'(t) = \frac{g(t) y_2(t)}{a (y_2(t) y_1'(t) - y_1(t) y_2'(t))}$$

If y_1 and y_2 are linearly independent, then the denominator is non-zero. By integrating each of $u'_1(t)$ and $u'_2(t)$, we find the solution $y(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$ of the original equation ay'' + by' + cy = g(t).

1. Let's say we're trying to solve ay'' + by' + cy = g(t) by the method of variation of parameters, and let's say that $b^2 > 4ac$, so that the characteristic equation has two real solutions $y_i = e^{r_i t}$ (i = 1 or 2). We're looking for $y_p(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$. Explicitly solve the system of linear equations you get for $u'_1(t)$ and $u'_2(t)$ (in terms of g(t), a, and r_1 and r_2).

2. Find the general solution to the differential equation:

$$y'' + 4y' + 3y = \frac{1}{1 + e^{2t}}$$

- 3. Here's another way to solve a second-order linear equation with constant coefficients. I will sketch the method in general; try it with the specific equation $4y'' 4y' + y = e^t$ (which you could also solve by "undetermined coefficients"):
 - (a) We're trying to find solutions y = y(t) to ay'' + by' + cy = g(t). Begin by finding a non-zero solution (you just need one) $y_0(t)$ to the homogeneous equation $ay''_0 + by'_0 + cy_0 = 0$.
 - (b) Now say we have some solution y to the nonhomogeneous equation. Whatever it is, we can divide by $y_0(t)$ to write $y(t) = z(t)y_0(t)$. Plug $y = zy_0$ into the nonhomogeneous equation, and use the product rule to expand out the derivatives.
 - (c) Use the fact that y_0 is a solution to the homogeneous equation to simplify the expression, and combine like terms in derivatives of z. Notice that there are no terms in z (just in z' and z'').
 - (d) Let w(t) = z'(t); then your equation becomes a *first-order linear* differential equation in w. Solve this equation for w(t).
 - (e) Integrate this solution to get z(t), and multiply by $y_0(t)$ to get y(t).