Math 1B Handout: Sequences

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Summer1B/

Wednesday, 23 July 2008

A sequence is an infinite list of numbers. In this class, and in most of math, we generally begin at 0: the beginning of a sequence is called the "zeroth" term, and then there's the "first" term, then the "second", etc. But really the indexing — is the sequence $\{a_0, a_1, a_2, \ldots\}$ or $\{a_4, a_5, a_6, \ldots\}$ — is largely irrelevant. In any case, the formal definition is that "A sequence is a function from the non-negative integers to the real numbers."

A sequence might or might not *converge* to a number, meaning it gets closer and closer to that number. A definition: $\lim_{n\to\infty} a_n = L$ if $|L - a_n|$ is small for sufficiently large n, i.e. if for any given $\epsilon > 0$ there exists an N such that for all n > N, $\epsilon > |L - a_n|$.

Whether, and to what, a sequence converges does not depend on the "early" values (or indeed on any given term) of a sequence. If a_n and b_n each converge, then so do $a_n + b_n$ and $a_n b_n$, and the limits add and multiply correctly.

If a sequence is monotonic — strictly increasing or strictly decreasing — and bounded, then it definitely converges.

A sequence can also converge to $+\infty$ or to $-\infty$. a_n converges to $+\infty$ if the terms increase without bound, i.e. if for any given $\epsilon > 0$ there exists an N such that for all n > N, $\epsilon < a_n$. An unbounded monotonic sequence converges to infinity.

- 1. (a) Show that the sequence $\{\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2}}, \ldots\}$ definitely converges. This takes two steps: show that each term is bigger than the previous, and show that no term is bigger than 3 (by induction: show that if a_n is less than 3, then so is a_{n+1}).
 - (b) Find the limit of the sequence $\{\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2}}, \ldots\}$, by finding an equation the limit must satisfy.
- 2. Show that the sequence defined by $a_0 = 2$ and $a_{n+1} = 1/(3 a_n)$ is positive and decreasing. Hence it must be convergent. Find the limit.
- 3. (a) Let's say a sequence s_n diverges to $+\infty$. What is the limit of $1/s_n$ as $n \to \infty$? Justify your answer.
 - (b) Is there a sequence t_n such that $\lim_{n\to\infty} t_n = 0$, such that $t_n \neq 0$ for any n, and $1/t_n$ does not diverge to $+\infty$ nor to $-\infty$?

- (c) If you know that $t_n > 0$ for every n and that $t_n \to 0$ as $n \to \infty$, then what can you say about $\lim_{n\to\infty} 1/t_n$?
- 4. Determine whether the following sequences converge or diverge:

(a)
$$\frac{n+1}{3n-1}$$

(b)
$$\frac{\sqrt{n}}{1+\sqrt{n}}$$

(c)
$$\frac{n}{1+\sqrt{n}}$$

(d)
$$\cos(2/n)$$

- (e) $n\cos n\pi$
- (f) $(-3)^n/n!$