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A series is an infinite sum of numbers. There are two sequences associated to each
series. First of all, there’s the sequence of terms in the sum (a.k.a. “summands”):
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Second, there’s the sequence of partial sums:
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We normally write the former explicitly:
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On the other hand, a series converges exactly if the sequence of partial sums converges, and
the limit of the sequence of partial sums is the “value” of the series. Standard notation:
the sequence of summands is a,,, the sequence of partial sums is s, = > ;_, ax, and if {s,}
converges, then > > o an = limy, o0 Sp.

Here are some facts about series:

e A series cannot converge unless the sequence of summands tends to 0. But the
sequence of summands can go to 0 without the series converging.

e The geometric series a + ar + ar® + ar® +... = >0, ar™ converges if and only if
|r] < 1. If it converges, then it converges to a/(1 — ). (A proof and generalization
of this is in problem 3.)

e If Y a,=Aand ) b, =B, then ) (a,+b,) = A+B. Let ¢, =Y ;o arbp—i. Then
> ¢n = AB. This is called the “Cauchy product” or “discrete convolution” of the
two series.

e This one isn’t so much a fact as a technique. If we can write each a,, as a difference
apn = by, — byy1, then s, = by — by41, so > a, converges if b, — 0. Partial fractions
are a good way to find such decompositions of terms as differences.



1. What is the sum
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i 1”_1+1+i+i+ ?
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How about

If k£ is some number strictly greater than 1, what is
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2. Determine whether the following series are convergent or divergent. If convergent,
find the sums:
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3. Remember how to evaluate the geometric series: if |r| < 1, then we can evaluate
S=3 o ar" =a+ar+ ar? + ar® + ... by mutiplying by r and subtracting:

S = a+ar+ar?+ar+...
- (r-8 = ar+ar’+ard+... )
S—rS = a
thus S = a4 .
1—17r

Use this method to compute the following sums:

@1+2+34 Lty 30
39 27 81 243 77

(b)1+é+9+ﬁ+§+%+
2 4 8 32 64 7



