Math 1B Handout: Alternating Series and Absolute Convergence

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Summer1B/

Tuesday, 29 July 2008

The Alternating Series Test: Let b_n be a positive decreasing sequence: $b_n \ge b_{n+1} \ge 0$ for every n. Then $\sum (-1)^n b_n$ converges.

Absolute versus Conditional Convergence: A series $\sum a_n$ is said to converge absolutely if the absolute-value series $\sum |a_n|$ converges. An absolutely convergent series converges. A series that converges but does not converge absolutely is conditionally convergent, since the convergence is conditioned on the signs of the terms.

- 1. For what values of p does $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$
 - (a) converge absolutely?
 - (b) converge conditionally?
 - (c) diverge?
- 2. Determine whether the following series are absolutely convergent, conditionally convergent, or divergent:

(a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\sqrt{n}}{1 + 2\sqrt{n}}$$

(f)
$$\sum_{n=1}^{\infty} \frac{1 + (-1)^n n + (1/2)^n n^2}{n^2}$$

(b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\ln n}{n}$$

(g)
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

(c)
$$\sum_{n=0}^{\infty} (-1)^n \frac{n}{n^2 + 1}$$

(h)
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$$

(d)
$$\sum_{n=0}^{\infty} (-1)^{n-1} \frac{2^n}{n^4}$$

$$(i) \sum_{n=1}^{\infty} \frac{3^n}{n!}$$

(e)
$$\sum_{n=0}^{\infty} \frac{\sin 4n}{4^n}$$

- 3. (a) Find a sequence $\{a_n\}$ so that $\sum_{n=1}^{\infty} a_n$ diverges, but $\sum_{n=1}^{\infty} (a_n)^2$ converges. (b) Find a sequence $\{a_n\}$ so that $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} (a_n)^2$ diverges.
- 4. Often we use integrals to test whether series converge or not. Sometimes it's useful to go the other way: use the Alternating Series theorem to prove that $\int_0^\infty \frac{\sin(x)}{x} dx$ converges. Warning: a priori, this series could diverge both at $x \to \infty$ and at x = 0 (since we can't divide by 0, and so $\frac{\sin(x)}{x}$ isn't well-defined at the end-point); why does the integral actually pose no problems at x = 0?