Math 1B Handout: Alternating Series, Absolute Convergence, and the Ratio Test

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Summer1B/

Wednesday, 30 July 2008

A power series $\sum c_n(x-a)^n$ has an *interval of convergence*, which are the numbers x such that the power series converges. Everything inside the interval of convergence is absolute; everything outside diverges. The boundaries you don't know: for each boundary point, decide if it's absolute, conditional, or divergent.) The interval is necessarily centered at a: it has a *radius of convergence*.

1. For what x do the following series (i) converge absolutely? (ii) converge conditionally? (iii) diverge?

(a)
$$\sum_{n=2}^{\infty} \frac{(x-1)^n}{n!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{nx^n}{3^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n(x-a)^n}{b^n} \text{ where } a \text{ and } b \text{ are fixed (but unknown) real numbers, and } b > 0.$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^n x^n}{n!}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^n x^n}{(n!)^2}$$

2. If $\sum c_n 4^n$ converges, does it follow that $\sum c_n (-2)^n$ converges? What about $\sum c_n (-4)^n$? 3. (a) What is the interval of convergence for

$$f(x) = \sum_{n=1}^{\infty} nx^{n-1} = 1 + 2x + 3x^2 + 4x^3 + \dots?$$

(b) What is the value of f(x)? There are two ways to do this problem (so pick one):

- i. Multiply f(x) by x, and subtract f(x) xf(x). Do you recognize this power series? Evaluate f(x) xf(x) and use that to solve for f(x).
- ii. Integrate $F(x) = \int_0^x f(t) dt$ term-by-term. Do you recognize this power series? Evaluate F(x) and differentiate to get f(x) = F'(x).
- 4. Let k be a positive integer. What is the radius of convergence of

$$\sum_{n=0}^{\infty} \frac{(n!)^k}{(kn)!} x^n$$

- 5. Show that if $\lim_{n\to\infty} \sqrt[n]{|c_n|} = c$, where $c \neq 0$, then the radius of convergence of the power series $\sum c_n x^n$ is R = 1/c.
- 6. Suppose the series $\sum c_n x^n$ has radius of convergence 2 and the series $\sum d_n x^n$ has radius of convergence 3. What is the radius of convergence of the series $\sum (c_n + d_n) x^n$?
- 7. Suppose that the radius of convergence of the power series $\sum c_n x^n$ is R. What is the radius of convergence of the power series $\sum c_n x^{2n}$?