Math 1B Handout 3 Trigonometric Substitutions

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Summer1B/

Wednesday, 25 June 2008

Please introduce yourselves to each other, and put your names at the top of a piece of blackboard. Take turns being the scribe: each of you should have a chance to write on the chalkboard for at least one of the exercises.

These groupwork exercises are hard — harder than on the homework, quizzes, or exams. That means that you should spend some time thinking and talking about them; they're designed to be solved in groups (the best way to learn mathematics). The problems are roughly in order of increasing difficulty. I don't expect any group to solve all of them.

Here's a hint: drawing pictures — e.g. sketching graphs of functions — will always make the problem easier.

More Trigonometry

Here are a few more formulas you might want.

$$2\sin(A)\sin(B) = \cos(A-B) - \cos(A+B)$$

$$2\sin(A)\cos(B) = \sin(A-B) + \sin(A+B)$$

$$2\cos(A)\cos(B) = \cos(A-B) + \cos(A+B)$$

- 1. Integrate: $\int \cos(3x) \sin(2x) dx$
- 2. Integrate: $\int \cos(2x+1)\cos(4x-2)\sin(x) dx$

Trigonometric Substitutions

Many mathematical formulae involve the square roots of sums or differences of squares. Any integral involving, say, $\sqrt{a^2 \pm x^2}$, should make you think of the Pythagorean theorem, and hence trigonometry. The following versions of the Pythagorean formula are especially useful:

Pythagorean identity	Suggested substitution	Part of integral	dx =
$1 - \sin^2 \theta = \cos^2 \theta$	$x = a\sin\theta$	$\sqrt{a^2 - x^2} = a\cos\theta$	$dx = a\cos\theta$
$-1 + \sec^2 \theta = \tan^2 \theta$	$x = a \sec \theta$	$\sqrt{x^2 - a^2} = a \tan \theta$	$dx = a \tan \theta \sec \theta$
$1 + \tan^2 \theta = \sec^2 \theta$	$x = a \tan \theta$	$\sqrt{a^2 + x^2} = a \sec \theta$	$dx = a \sec^2 \theta$

We always take θ in the range $0 \le \theta \le \pi/2$, so that all trig functions are positive. Feel free to change the bounds of integration, but attend to the signs of all terms and the domain in θ . The last integral is also particularly useful when the integral includes $1/(a^2 + x^2)$, even without a square root.

- 1. Try these integrals:
 - (a) $\int_0^2 x^3 \sqrt{x^2 + 4} \, dx$ (b) $\int x^{-4} \sqrt{x^2 a^2} \, dx$ (c) $\int t^5 (t^2 + 2)^{-1/2} \, dx$ (d) $\int_0^1 x \sqrt{x^2 + 4} \, dx$ (e) $\int (u\sqrt{5 - u^2})^{-1} \, du$ (f) $\int_0^1 \sqrt{1 + x^2} \, dx$ (g) $\int (x^2 \sqrt{16x^2 - 9})^{-1} \, dx$ (h) $\int t(25 - t^2)^{-1} \, dt$ (i) $\int_0^{\pi/2} \cos t \, (1 + \sin^2 t)^{-1/2} \, dt$ (j) $\int x^n (1 + x^2)^{-1} \, dx$
 - (i) $\int_0^\infty \cos \theta \left(1 + \sin \theta\right) = \sin \theta \left(1 + \sin \theta\right) = \sin \theta$
- 2. (a) What is the domain of the function $\sqrt{x^2 + 2x + 2}$? Find numbers r and a such that $x^2 + 2x + 2 = (x r)^2 \pm a^2$.
 - (b) Evaluate the following integrals: $\int \sqrt{x^2 + 2x + 2} \, dx$. $\int (x^2 + 2x + 2)^{-1/2} \, dx$. $\int (x^2 + 2x + 2)^{-2} \, dx$.
- 3. (a) What is the domain of the function $\sqrt{x^2 + 4x 5}$? Find numbers r and a such that $x^2 + 4x 5 = (x r)^2 \pm a^2$.
 - (b) Evaluate the following integrals: $\int \sqrt{x^2 + 4x 5} \, dx$. $\int (x^2 + 4x 5)^{-1/2} \, dx$.
- 4. Find the average value of $f(x) = \sqrt{x^2 1}/x$ for $1 \le x \le 7$.
- 5. Draw the ellipses and find their areas:
 - (a) $25x^2 + 9y^2 100x + 18y 116 = 0$
 - (b) $13x^2 + 13y^2 + 10xy = 25$
- 6. Imagine taking a solid sphere of radius 1, and slicing it by a plane slice a distance a < 1 from the center. What are the volumes of the two pieces?
- 7. You're standing on a pier. There's a boat in the water at distance L from you, connected to a rope of length L, and you're holding the other end (the rope is completely taut). Imagine that you start to walk along the pier, pulling the rope; sketch the path the boat follows.

In fact, the boat will follow a path called a *tractrix*; it's defined by the property that the rope is always tangent to the path of the boat. To find an equation for the path as a function y = y(x), solve the following integral:

$$\int \frac{dy}{y} = \int \frac{-\sqrt{L^2 - x^2}}{x} dx$$