Math 1B Quiz 12

GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/08Summer1B/

Tuesday, 12 August 2008

Name:	 Score:	/10

You have twenty minutes (plus the break) to complete the following closed-note open-chalkboard quiz. Partial credit will be awarded for correct work, and no points will be given for simply writing down the correct answer. Please box your final answers.

- 1. (0 pts) Favorite math you learned all summer? The generalized product and chain rules.
- 2. (10 pts) Find a Taylor Series expansion of the following function centered at a = 9:

$$f(x) = \frac{1}{\sqrt{x}}$$

Find the interval of convergence of your series. Convergence is always absolute inside the radius of convergence; for each boundary in your series, state whether the series converges absolutely, converges conditionally, or diverges.

We calculate derivatives:

n	$f^{(n)}(x)$	$c_n(x-9)^n = f^{(n)}(9) (x-9)^n/n!$
0	$x^{-1/2}$	1/3
1	$-\frac{1}{2}x^{-3/2}$	-(1/2)(1/27)(x-9)
2	$\frac{3}{4}x^{-5/2}$	$(3/4)(1/3^5)(x-9)^2/2$
3	$-\frac{15}{8}x^{-7/2}$	$-(1\cdot 3\cdot 5/2^3)(1/3^7)(x-9)^3/3!$
:		:
n	$(-1)^n \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2^n} x^{-(2n+1)/2}$	$(-1)^n \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{2^n 3^{2n+1} n!} (x-9)^n$

Thus, the sum is

$$\frac{1}{\sqrt{x}} = \sum_{n=0}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2^n 3^{2n+1} n!} (x-9)^n = \sum_{n=0}^{\infty} (-1)^n \frac{(2n)!}{2^{2n} 3^{2n+1} (n!)^2} (x-9)^n$$

The radius of convergence is

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \frac{2^2 3^2 (n+1)^2}{(2n+2)(2n+1)} = 9$$

The interval is centered at 9, so the endpoints are 0 and 18. By Stirling's formula, the series diverges at x=0 with $\sum 1/\sqrt{n}$, and converges conditionally at x=9 with $\sum (-1)^n/\sqrt{n}$.