Math 1A: Discussion Exercises

GSI: Theo Johnson-Freyd
http://math.berkeley.edu/~theojf/09Spring1A/
Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the following exercises. Be sure to discuss how to solve the exercises - how you get the solution is much more important than whether you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: in particular, the last few exercises may be very hard.

Many of the exercises are from Single Variable Calculus: Early Transcendentals for UC Berkeley by James Stewart; these are marked with an \S. Others are my own, or are independently marked.

More Limits

1. § Sketch the graph of an exmple of a function f such that $\lim _{x \rightarrow 3^{+}} f(x)=4, \lim _{x \rightarrow 3^{-}} f(x)=2$, $\lim _{x \rightarrow-2} f(x)=2, f(3)=3, f(-2)=1$, and $\lim _{x \rightarrow 1} f(x)=+\infty$.
2. Last time, we defined two functions:

$$
\begin{aligned}
\lfloor x\rfloor & =\text { greatest integer less than or equal to } x \\
\delta_{\mathbb{Z}}(x) & = \begin{cases}1, & \text { if } x \text { is an integer } \\
0, & \text { if } x \text { is not an integer }\end{cases}
\end{aligned}
$$

We saw that $\lim _{x \rightarrow a}\lfloor x\rfloor$ exists only if a is not an integer, and $\lim _{x \rightarrow a} \delta_{\mathbb{Z}}(x)=0$ for every a.
(a) § Sketch the region in the plane defined by $\lfloor x\rfloor^{2}+\lfloor y\rfloor^{2}=1$.
(b) Show that $\lfloor x\rfloor+\lfloor-x\rfloor=\delta_{\mathbb{Z}}(x)-1$.
(c) What does part (a) say about the Sum and Difference limit laws?
3. § Evaluate $\lim _{x \rightarrow 0} \frac{|2 x-1|-|2 x+1|}{x}$.
4. § Evaluate the limit, if it exists:
(a) $\lim _{t \rightarrow-3} \frac{t^{2}-9}{2 t^{2}+7 t+3}$
(c) $\lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8}$
(e) $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}$
(g) $\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{16 x-x^{2}}$
(b) $\lim _{h \rightarrow 0} \frac{(4+h)^{2}-16}{h}$
(d) $\lim _{t \rightarrow 9} \frac{9-t}{3-\sqrt{t}}$
(f) $\lim _{x \rightarrow-4} \frac{4^{-1}+x^{-1}}{4+x}$
(h) $\lim _{t \rightarrow 0} \frac{1}{t \sqrt{t+1}}-\frac{1}{t}$
5. § In the theory of Special Relativity, the mass of a particle with velocity v is

$$
m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}
$$

where m_{0} is the mass of the particle at rest and c is the speed of light.
(a) What happens as $v \rightarrow c^{-}$?
(b) Does it make sense to ask about $v \rightarrow c^{+}$?
6. § If $\lim _{x \rightarrow a}[f(x)+g(x)]=2$ and $\lim _{x \rightarrow a}[f(x)-g(x)]=1$, find $\lim _{x \rightarrow a}[f(x) g(x)]$. Warning: $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ might not exist.
7. § Give an example showing that $\lim _{x \rightarrow a}[f(x) g(x)]$ may exist even though neither $\lim _{x \rightarrow a} f(x)$ nor $\lim _{x \rightarrow a} g(x)$ exists.
8. True of False:

$$
\text { If } \lim _{x \rightarrow 1}[f(x)]^{2}=4 \text {, then } \lim _{x \rightarrow 1} f(x)=2
$$

If true, prove it. If false, find a counterexample.
9. § If $4 x-9 \leq f(x) \leq x^{2}-4 x+7$ for $x \geq 0$, find $\lim _{x \rightarrow 4} f(x)$.
10. § Prove that $\lim _{x \rightarrow 0^{+}} \sqrt{x} e^{\sim(\pi / x)}=0$.
11. Sketch a graph of $y=\frac{x^{2}-4}{|x+2|}$.
12. § Find the limit, or prove it does not exist.
(a) $\lim _{x \rightarrow 3}(2 x+|x-3|)$
(b) $\lim _{x \rightarrow-6} \frac{2 x+12}{|x+6|}$
(c) $\lim _{x \rightarrow 0.5^{-}} \frac{2 x-1}{\left|2 x^{3}-x^{2}\right|}$
(d) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right)$
13. § Use the limit laws to prove: if p is a polynomial, then $\lim _{x \rightarrow a} p(x)=p(a)$.
14. § Use the limit laws and the previous exercise to prove: if r is a rational function and a is in the domain of r, then $\lim _{x \rightarrow a} r(x)=r(a)$. Give an example to explain why the condition " a is in the domain of $r "$ is necessary.
15. §
(a) Evaluate $\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$.
(b) Evaluate $\lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$.
16. \S Is there a number a so that $\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}$ exists? If so, find a and the limit.
17. § Let C_{1} be a "fixed" circle $C_{1}=\left\{(x-1)^{2}+x^{2}=1\right\}$ centered at $(1,0)$ with radius 1 , and let C_{2} be a "shrinking" circle $C_{2}=\left\{x^{2}+y^{2}=r^{2}\right\}$ of radius r centered that the origin. (See diagram below.) Let $P=(0, r)$ be the point where C_{2} intersects the positive y-axis, and Q the upper point of intersection of the two circles, and let R be the point of intersection of the line $P Q$ with the x-axis. What happens to R as C_{2} shrinks, i.e. what is $\lim _{r \rightarrow 0} R$?

Hard problems from previous days

18. Use algebra to show the shifting a graph by a units upward and then stretching vertically by a factor of b is the same as first stretching the graph vertically by a factor of b and then shifting upward by $a b$.
