Math 1A: Discussion Exercises GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/09Spring1A/

Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the following exercises. Be sure to discuss how to solve the exercises — how you get the solution is much more important than *whether* you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: in particular, the last few exercises may be very hard.

Many of the exercises are from *Single Variable Calculus: Early Transcendentals for UC Berkeley* by James Stewart; these are marked with an §. Others are my own, or are independently marked.

Warm-up from previous days

1. § Evaluate
$$\lim_{x \to 2} \arctan\left(\frac{x^2 - 4}{3x^2 - 6x}\right)$$
.

- 2. Let \heartsuit and \clubsuit be two relationships. Define \diamond by: " $a \diamond b$ " means "If $x \heartsuit a$, then $x \clubsuit b$ ".
 - (a) What would be required to prove: "There exists an x such that $x \heartsuit 1$ "? What would be required to disprove it?
 - (b) What would be required to prove: "For every $x, x \otimes 1$ "? What would be required to disprove it?
 - (c) What would be required to prove: "For every *a* there exists an *x* such that $x \circ a$ "? What would be required to disprove it?
 - (d) Given numbers a and b, what would be required to prove: " $a \diamond b$ "?
 - (e) What would be required to prove: "For every b there exists an a such that $a \diamond b$ "?
 - (f) What would be required to prove: "It is not true that for every b there exists an a such that $a \diamond b$ "?
- 3. § Prove the statement using the ϵ, δ definition of limit:
 - (a) $\lim_{x \to 6} \left(\frac{x}{4} + 3\right) = \frac{9}{2}$ (b) $\lim_{x \to 0} |x| = 0$ (c) $\lim_{x \to 2} x^3 = 8$
- 4. § For what value of the constant c is the given function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2\\ x^3 - cx & \text{if } x \ge 2 \end{cases}$$

Intermediate Value Theorem and infinite limits

5. § Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval:

(a) $x^4 + x - 3 = 0, x \in (1, 2)$ (b) $\cos x = x, x \in (0, 1)$ (c) $\ln x = e^{-x}, x \in (1, 2)$

6. Use the infinite limit laws and the Intermediate Value Theorem to prove the following result: If a polynomial p(x) has odd degree (so the highest exponent appearing with a non-zero coefficient in p(x) is odd), then p(x) has at least one real root.

- 7. (a) § Can the graph of a function intersect a vertical asymptote? Can it intersect a horizontal asymptote? Justify your answers, either with a proof or a counterexample.
 - (b) § How many horizontal asymptotes can the graph of a function have? Illustrate all the possibilities.
- 8. Sketch the graph of an example of a function f such that: $\lim_{x\to 0^+} f(x) = -\infty$, $\lim_{x\to\infty} f(x) = 2$, f(3) = 3, and f is odd.
- 9. § Evaluate the limit and justify each step by indicating the appropriate properties of limit:

$$\lim_{x \to \infty} \frac{3x^2 - x + 4}{2x^2 + 5x - 8}$$

10. The following equation is usually nonsensical:

$$\frac{\infty^2}{\infty} = \infty$$

- (a) If we interpret the symbol "∞" as meaning "the limit of any function that goes to infinity", give an example showing that the above equation is not necessarily true.
- (b) If we interpret the symbol " ∞ " as meaning something like "the limit of x as $x \to \infty$ ", explain whether the above equation is justified.
- 11. In this course, there are two "infinities": $+\infty$ and $-\infty$. Let's replace those with a different notion: let's introduce the symbol Ω to mean $\lim_{x\to 0} 1/x$. What properties does Ω have? Is it positive? Negative? What should we make of the expressions $\Omega + 2$, $\Omega \times 3$, $-1/\Omega$, $\Omega + \Omega$, and Ω^2 ?

Hard problems from previous days

- 12. Use algebra to show the shifting a graph by a units upward and then stretching vertically by a factor of b is the same as first stretching the graph vertically by a factor of b and then shifting upward by ab.
- 13. § Let C_1 be a "fixed" circle $C_1 = \{(x-1)^2 + x^2 = 1\}$ centered at (1,0) with radius 1, and let C_2 be a "shrinking" circle $C_2 = \{x^2 + y^2 = r^2\}$ of radius r centered that the origin. (See diagram below.) Let P = (0, r) be the point where C_2 intersects the positive y-axis, and Qthe upper point of intersection of the two circles, and let R be the point of intersection of the line PQ with the x-axis. What happens to R as C_2 shrinks, i.e. what is $\lim_{r\to 0} R$?

