Math 1A: Discussion Exercises GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/09Spring1A/

Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the following exercises. Be sure to discuss how to solve the exercises — how you get the solution is much more important than *whether* you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: in particular, the last few exercises may be very hard.

Many of the exercises are from *Single Variable Calculus: Early Transcendentals for UC Berkeley* by James Stewart; these are marked with an §. Others are my own, or are independently marked.

Trig functions

- 1. § Differentiate.
 - (a) $2 \csc x + 5 \cos x$ (c) $e^u (\cos u + cu)$ (e) $\csc \theta (\theta + \cot \theta)$ (b) $4 \sec t + \tan t$ (d) $(1 - \sec x) / \tan x$ (f) $x e^x \csc x$
- 2. § Find an equation of the tangent line to the curve at the given point::

(a) $y = \sec x, (\pi/3, 2)$ (b) $y = e^x \cos x, (0, 1)$ (c) $y = x + \cos x, (0, 1)$

- 3. § If $f(x) = e^x \cos x$, find f'(x) and f''(x).
- 4. Either by remembering the proof from the textbook, or by recognizing them as derivatives, find the following limits:

$$\lim_{x \to 0} \frac{\sin x}{x} \qquad \qquad \lim_{x \to 0} \frac{\cos x - 1}{x}$$

5. § Using the previous problem, find the following limits:

(a)
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$
(b)
$$\lim_{t \to 0} \frac{\tan 6t}{\sin 2t}$$
(c)
$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\sin \theta}$$
(e)
$$\lim_{x \to 0} \frac{\sin(x^2)}{x}$$
(f)
$$\lim_{x \to 0} \frac{\sin x}{x + \tan x}$$

6. § Find the limits:

$$\lim_{x \to \pi/4} \frac{1 - \tan x}{\sin x - \cos x} \qquad \qquad \lim_{x \to 1} \frac{\sin(x - 1)}{x^2 + x - 2}$$

- 7. (a) § A mass on a spring oscillates horizontally on a level, frictionless surface. Its equation of motion is $x(t) = 2 \sin 3t$. Find the velocity v(t) and acceleration a(t) of the mass as functions of time.
 - (b) What is the relationship between x(t) and a(t)?
 - (c) Show that for any numbers A and B, the equation of motion $x(t) = A \sin 3t + B \cos 3t$ satisfies the same relationship as you found in part (b).
- 8. (a) § Prove, using the definition of derivative and the sum-of-angles formulae, that $\cos' = \sin$.

- (b) § Prove, using the formulas for the derivatives of sin and cos and also the quotient rule, the formulae for the derivatives of csc, sec, and cot.
- 9. What's the derivative of $\sin^2 x$? What's the derivative of $\cos^2 x$? What happens when you add them together and why?
- 10. Find numbers A and B so that

$$\frac{d}{dx}\left[Ae^x\cos x + Be^x\sin x\right] = e^x\cos x$$

Harder questions on earlier material

- 11. Write out the first few derivatives (f, f', f'', \dots) of $f(x) = xe^x$. Do you notice a pattern?
- 12. (a) Prove that if p is a polynomial of degree n, then the derivative of $p(x) e^x$ is $q(x) e^x$, where q is also a polynomial of degree n.
 - (b) Let $f(x) = p(x) e^x$ where p is a polynomial. What is $\lim_{x \to -\infty} f^{(n)}(x)$?
- 13. Let r be a rational function, so that r(x) = p(x)/q(x) for some polynomials p and q. Define the *degree* of r to be deg $p - \deg q$, where deg p is the degree of p, i.e. the highest power of a non-zero term in p. Prove that r', the derivative of r, is a rational function, and prove that deg $r' = \deg r - 1$.
- 14. (a) Use the definition of derivative to prove the product rule.
 - (b) Use the product rule to prove the quotient rule.
 - (c) Let p be a polynomial. Use the product rule, but not the chain rule, to prove that $\frac{d}{dx}[p(q(x))] = p'(q(x)) q'(x).$