Math 1A: Discussion Exercises

GSI: Theo Johnson-Freyd

http://math.berkeley.edu/~theojf/09Spring1A/

Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the following exercises. Be sure to discuss how to solve the exercises — how you get the solution is much more important than whether you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: in particular, the last few exercises may be very hard.

Many of the exercises are from Single Variable Calculus: Early Transcendentals for UC Berkeley by James Stewart; these are marked with an §. Others are my own, or are independently marked.

Chain Rule

1. § Differentiate.

(a)
$$(4x - x^2)^{100}$$

(e)
$$a^3 + \cos^3 x$$

(i)
$$\tan^2(3\theta)$$

(b)
$$(1+x^4)^{3/2}$$

(f)
$$(t^4-1)^3(t^3+1)^4$$

(j)
$$e^{k \tan \sqrt{x}}$$

(c)
$$\sqrt[3]{1 + \tan t}$$

(g)
$$10^{1-x^2}$$

(k)
$$\sin(\sin(\sin x))$$

(d)
$$\frac{(y-1)^4}{(y^2+2y)^5}$$

(h)
$$\frac{e^u - e^{-u}}{e^u + e^{-u}}$$

(l)
$$\left(\frac{y^2}{y+1}\right)^2$$

- 2. § Suppose that f is differentiable on \mathbb{R} . Let $F(x) = f(e^x)$ and $G(x) = e^{f(x)}$. Find expressions for F'(x) and G'(x).
- 3. § For what values of r does the function $y = e^{rx}$ satisfy the differential equation y'' + 5y' 6y = 0?
- 4. § Find the 50th derivative of $y = \cos 2x$. Find the 1000th derivative of $f(x) = xe^{-x}$.
- 5. § Air is being pumped into a spherical balloon. At any time t, the volume of the balloon is V(t) and the radius is r(t). What do the derivatives dV/dr and dV/dt represent? What is the relationship between dV/dt, r, and dr/dt?
- 6. § Use the chain rule to prove that the derivative of an even function is an odd function, and that the derivative of an odd function is an even function.
- 7. \S If n is a positive integer, prove that:

$$\frac{d}{dx}(\sin^n x \cos nx) = n\sin^{n-1} x \cos((n+1)x)$$

Find a similar formula for $\frac{d}{dx}(\cos^n x \cos nx)$.

8. The Leibniz notation makes the chain rule very natural looking:

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

1

However, the corresponding formula for the second derivative $-\frac{d^2y}{dx^2} = \frac{d^2y}{du^2}\frac{du^2}{dx^2} = \frac{d^2y}{du^2}\left(\frac{du}{dx}\right)^2$ —is false. Instead, prove the following "chain rule for second derivatives", by using the chain and product rules:

$$\frac{d^2y}{dx^2} = \frac{d^2y}{du^2} \left(\frac{du}{dx}\right)^2 + \frac{dy}{du} \frac{d^2u}{dx^2}$$

- 9. (a) Let f be a differentiable function, such that f'(x) > 0 for all x. By drawing a graph, show that f is an increasing and hence one-to-one.
 - (b) Let g be the inverse of f, so that f(g(x)) = g(f(x)) = x. Use the chain rule to find the derivative of g in terms of the derivative of f.
 - (c) Show that $\ln' x$ the derivative of $\ln x$ is 1/x.

Harder questions on earlier material

- 10. Write out the first few derivatives (f, f', f'', \dots) of $f(x) = xe^x$. Do you notice a pattern?
- 11. (a) Prove that if p is a polynomial of degree n, then the derivative of $p(x) e^x$ is $q(x) e^x$, where q is also a polynomial of degree n.
 - (b) Let $f(x) = p(x) e^x$ where p is a polynomial. What is $\lim_{x \to -\infty} f^{(n)}(x)$?
- 12. Let r be a rational function, so that r(x) = p(x)/q(x) for some polynomials p and q. Define the degree of r to be $\deg p \deg q$, where $\deg p$ is the degree of p, i.e. the highest power of a non-zero term in p. Prove that r', the derivative of r, is a rational function, and prove that $\deg r' = \deg r 1$.
- 13. (a) Use the definition of derivative to prove the product rule.
 - (b) Use the product rule to prove the quotient rule.
 - (c) Let p be a polynomial. Use the product rule, but not the chain rule, to prove that $\frac{d}{dx}[p(q(x))] = p'(q(x)) q'(x)$.

In fact, from just the product rule, you can prove the chain rule provided that the outer function is a rational function (ratio of two polynomials).

- 14. What's the derivative of $\sin^2 x$? What's the derivative of $\cos^2 x$? What happens when you add them together and why?
- 15. Find numbers A and B so that

$$\frac{d}{dx}\left[Ae^x\cos x + Be^x\sin x\right] = e^x\cos x$$

16. Let $f(x) = a^x$. Then $f'(0) = \ln a$. (Why?) Let's say we didn't know that. Define the function $\ell(a)$ for a > 0 by $\ell(a) = \frac{d}{dx}a^x\big|_{x=0}$. Use the product rule to show directly that $\ell(ab) = \ell(a) + \ell(b)$. Use the quotient rule to show directly that $\ell(a/b) = \ell(a) - \ell(b)$. Show directly that $\ell(1) = 0$.

2