Math 1A: Discussion Exercises

GSI: Theo Johnson-Freyd
http://math.berkeley.edu/~theojf/09Spring1A/
Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the following exercises. Be sure to discuss how to solve the exercises - how you get the solution is much more important than whether you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: in particular, the last few exercises may be very hard.

Many of the exercises are from Single Variable Calculus: Early Transcendentals for UC Berkeley by James Stewart; these are marked with an \S. Others are my own, or are independently marked.

L'Hospital's Rule

1. § Given that

$$
\lim _{x \rightarrow a} f(x)=0, \quad \lim _{x \rightarrow a} g(x)=0, \quad \lim _{x \rightarrow a} h(x)=1, \quad \lim _{x \rightarrow a} p(x)=\infty, \quad \lim _{x \rightarrow a} q(x)=\infty,
$$

determine which of the following are indeterminate, and evaluate the limit of those that are not indeterminate.

$$
\begin{aligned}
& \text { e. } \quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}, \quad \lim _{x \rightarrow a} \frac{f(x)}{p(x)}, \quad \lim _{x \rightarrow a} \frac{p(x)}{h(x)}, \quad \lim _{x \rightarrow a} \frac{p(x)}{q(x)}, \\
& \lim _{x \rightarrow a}[f(x) p(x)], \quad \lim _{x \rightarrow a}[h(x) p(x)], \\
& \lim _{x \rightarrow a}[q(x) p(x)], \\
& \lim _{x \rightarrow a}[f(x)-p(x)], \quad \lim _{x \rightarrow a}[q(x)-p(x)], \quad \lim _{x \rightarrow a}[q(x)+p(x)], \\
& \lim _{x \rightarrow a}[f(x)]^{g(x)}, \\
& \lim _{x \rightarrow a}[f(x)]^{p(x)}, \quad \lim _{x \rightarrow a}[h(x)]^{p(x)}, \\
& \lim _{x \rightarrow a}[p(x)]^{g(x)}, \\
& \lim _{x \rightarrow a}[p(x)]^{q(x)}, \quad \lim _{x \rightarrow a} \sqrt[q(x)]{p(x)},
\end{aligned}
$$

2. § Find the limit. Use l'Hospital's Rule where appropriate, but also look for other methods.
(a) $\lim _{x \rightarrow 1} \frac{x^{9}-1}{x^{5}-1}$
(c) $\lim _{x \rightarrow 0} \frac{\tan p x}{\tan q x}$
(e) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$
(b) $\lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{b}-1}$
(d) $\lim _{\theta \rightarrow \pi / 2} \frac{1-\sin \theta}{\csc \theta}$
(f) $\lim _{x \rightarrow \infty} \frac{x+x^{2}}{1-2 x^{2}}$
3. More MVT: This is a follow-up to today's quiz. In particular, on the quiz you should have found exactly two extrema and exactly two inflection points.
(a) Let $f(x)=(x-r) e^{x}$. Use calculus to sketch a graph of $f(x)$, and label the zeros, local extrema, and inflection points. Also label the y-intercept and any horizontal asymptotes.
(b) Let $f(x)=\left(x^{2}+b x+c\right) e^{x}$. What is the behavior of $f(x)$ as $x \rightarrow \pm \infty$? Use the Mean Value Theorem to show that if $f(x)$ has one or two zeros, then it must have two local extrema.
(c) More generally, let $f(x)=p(x) e^{x}$, where $p(x)$ is a polynomial of degree n. Show that if $f(x)$ has exactly n (real, distinct) zeros, then it also has exactly n local extrema and exactly n inflection points. Hint: Show that $f^{\prime}(x) / e^{x}$ is a polynomial of degree n, so does not have more than n roots. Then use MVT to show that it has at least n roots.

For a harder fourth part, look on Monday's handout or ask Theo.

