Math 1A: Discussion Exercises GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/09Spring1A/

Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the following exercises. Be sure to discuss how to solve the exercises — how you get the solution is much more important than *whether* you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: in particular, the last few exercises may be very hard.

Many of the exercises are from *Single Variable Calculus: Early Transcendentals for UC Berkeley* by James Stewart; these are marked with an §. Others are my own, or are independently marked.

Newton's Method

1. Recall that in Newton's Method, we approximate roots of functions by iterating $x_{n+1} = x_n - f(x_n)/f'(x_n)$. § Use Newton's Method to find x_3 for the specified f(x) and x_1 :

(a)
$$f(x) = x^3 + 2x - 4, x_1 = 1$$
 (b) $f(x) = x^5 - x - 1, x_1 = 1$

- 2. § Use Newton's Method to find $\sqrt[5]{20}$, correct to three decimal places. Hint: what easy equation is $\sqrt[5]{20}$ a root of?
- 3. § Use Newton's Method to find the positive root of $x^2 = \sin x$, correct to three decimal places.
- 4. § Use Newton's Method to find all roots of $e^x = 3 2x$, correct to three decimal places.
- 5. § Apply Newton's Method to the equation $x^2 a = 0$ to derive an iterative formula for computing \sqrt{a} .
- 6. § Apply Newton's Method to the equation a 1/x = 0 to derive an iterative formula for computing 1/a.
- 7. What happens when you apply Newton's Method to the function $f(x) = \sqrt[3]{x}$?
- 8. What happens when you apply Newton's Method to the function $f(x) = x^3 2x + 2$ with starting location $x_1 = 0$?
- 9. § Use Newton's Method to find the absolute maximum of the function $f(x) = x \cos x$ in $0 \le x \le \pi$, correct to three decimal places.

There is much deep mathematics related to Newton's Method, largely beyond the scope of this class. See for example http://en.wikipedia.org/wiki/Newton_fractal and related pages for an explanation of how Newton's Method is connected to fractals like the one behind this page. (Image from http://www.cattail.nu/photoshop/brushes/classic_fractal.html. A particularly nice gallery of "Newton Fractals" is at http://local.wasp.uwa.edu.au/~pbourke/fractals/ newtonraphson/.)