Math 1A: Discussion Exercises

GSI: Theo Johnson-Freyd
http://math.berkeley.edu/~theojf/09Spring1A/
Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the following exercises. Be sure to discuss how to solve the exercises - how you get the solution is much more important than whether you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: in particular, the last few exercises may be very hard.

Many of the exercises are from Single Variable Calculus: Early Transcendentals for UC Berkeley by James Stewart; these are marked with an \S. Others are my own, or are independently marked.

The Definite Integral

1. § Using only the following facts, and the linearity (Sum, Difference, and Constant Multiple rules) of \sum and \int, evaluate the integrals below. The facts:

$$
\sum_{i=1}^{n} 1=\frac{n}{1}, \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n\left(n+\frac{1}{2}\right)(n+1)}{3}, \quad \sum_{n=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

The integrals:
(a) $\int_{-1}^{5}(1+3 x) d x$
(b) $\int_{0}^{2}\left(2-x^{2}\right) d x$
(c) $\int_{0}^{5}\left(1+2 x^{2}\right) d x$
(d) $\int_{1}^{2} x^{3} d x$
2. Using the facts in the previous problem, prove the following formulas:
(a) $\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2}$
(b) $\int_{a}^{b} x^{2} d x=\frac{b^{3}-a^{3}}{3}$
(c) $\int_{a}^{b} x^{3} d x=\frac{b^{4}-a^{4}}{4}$
3. Based on the formulas from the previous problem, guess the formula for $\int_{a}^{b} x^{n} d x$. Check that your formula works for $n=0$. What happens when $n=-1$? For which n are you confident that your formula is correct?
4. § Evaluate each of the following integrals by interpreting them in terms of areas.
(a) $\int_{0}^{3}\left(\frac{1}{2} x-1\right) d x$
(c) $\int_{-2}^{2} \sqrt{4-x^{2}} d x$
(e) $\int_{-1}^{2}|x| d x$
(b) $\int_{-1}^{3}(3-2 x) d x$
(d) $\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x$
(f) $\int_{-1}^{1} x^{5} \cos x d x$
5. (a) Use the fact that $\cos x=\sin \left(\frac{\pi}{4}-x\right)$ to prove that $\int_{0}^{\pi / 4} \cos ^{2} x d x=\int_{0}^{\pi / 4} \sin ^{2} x d x$.
(b) Use the previous problem and the Pythagorean theorem to find $\int_{0}^{\pi / 4} \sin ^{2} x$.
6. § If $\int_{1}^{5} f(x) d x=12$ and $\int_{4}^{5} f(x) d x=3.6$, find $\int_{1}^{4} f(x) d x$.
7. § Find $\int_{0}^{5} f(x) d x$ if $f(x)=\left\{\begin{array}{ll}3, & x<3 \\ x, & x \geq 3\end{array}\right.$.
8. § Recall that if $f(x) \leq g(x)$ for every $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$. Use this fact to prove that:

$$
2 \leq \int_{-1}^{1} \sqrt{1+x^{2}} d x \leq 2 \sqrt{2}
$$

9. § By finding the maximum and minimum values of each of the following functions on the corresponding interval, bound the value of the integral:
(a) $\int_{1}^{4} \sqrt{x} d x$
(b) $\int_{0}^{2} \frac{1}{1+x^{2}} d x$
(c) $\int_{\pi / 4}^{\pi / 3} \tan x d x$
(d) $\int_{0}^{2} x e^{-x} d x$
10. § Prove that $\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \frac{26}{3}$.
11. § Prove that if f is continuous on $[a, b]$, then

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

12. § Use the previous problem to prove for any continuous function $f(x)$:

$$
\left|\int_{0}^{2 \pi} f(x) \sin x d x\right| \leq \int_{0}^{2 \pi}|f(x)| d x
$$

13. § By choosing $x^{*}=\sqrt{x_{i-1} x_{i}}$, evaluate $\int_{1}^{2} x^{-2} d x$. Hint: $\frac{1}{m(m+1)}=\frac{1}{m}-\frac{1}{m+1}$.
