Math 1A: Discussion Exercises

GSI: Theo Johnson-Freyd
http://math.berkeley.edu/~theojf/09Spring1A/
Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the following exercises. Be sure to discuss how to solve the exercises - how you get the solution is much more important than whether you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: in particular, the last few exercises may be very hard.

Many of the exercises are from Single Variable Calculus: Early Transcendentals for UC Berkeley by James Stewart; these are marked with an \S. Others are my own, or are independently marked.

The Fundamental Theorem of Calculus, part 1

1. § Find the derivative of each of the following functions (Hint: chain rule):
(a) $g(x)=\int_{1}^{x} \frac{1}{t^{3}+1} d t$
(e) $h(x)=\int_{2}^{1 / x} \arctan t d t$
(i) $g(x)=\int_{2 x}^{3 x} \frac{u^{2}-1}{u^{2}+1} d u$
(b) $g(y)=\int_{2}^{y} t^{2} \sin t d t$
(f) $h(x)=\int_{0}^{x^{2}} \sqrt{1+r^{3}} d r$
(j) $g(x)=\int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t$
(c) $F(x)=\int_{x}^{\pi} \sqrt{1+\sec t} d t$
(g) $y=\int_{0}^{\tan x} \sqrt{t+\sqrt{t}} d t$
(k) $y=\int_{\sqrt{x}}^{x^{2}} \sqrt{t} \sin t d t$
(d) $G(x)=\int_{x}^{1} \cos \sqrt{t} d t$
(h) $y=\int_{1-3 x}^{1} \frac{u^{3}}{1+u^{2}} d u$
(l) $y=\int_{\cos x}^{5 x} \cos \left(u^{2}\right) d u$
2. (a) Find the derivative of the following quantity:

$$
f(x)=\int_{\sin x}^{\cos x} \sqrt{1-v^{2}} d v
$$

(b) What is the general antiderivative of your answer to part (a)?
(c) By interpreting the integral as an area, find $f(0)$.
(d) Thus, find $f(x)$.
3. § Find a function f and a number a such that for every $x>0$:

$$
6+\int_{a}^{x} \frac{f(t)}{t^{2}} d t=2 \sqrt{x}
$$

First Hint: what is the derivative of the equation? Second Hint: when is the integral 0 ?

