Math 1A: Discussion Exercises

GSI: Theo Johnson-Freyd
http://math.berkeley.edu/~theojf/09Spring1A/
Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the following exercises. Be sure to discuss how to solve the exercises - how you get the solution is much more important than whether you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: in particular, the last few exercises may be very hard.

Many of the exercises are from Single Variable Calculus: Early Transcendentals for UC Berkeley by James Stewart; these are marked with an \S. Others are my own, or are independently marked.

u-substitutions

1. § Evaluate the indefinite integral:
(a) $\int \frac{(\ln x)^{2}}{x} d x$
(g) $\int \frac{z^{2} d z}{\sqrt[3]{1+z^{3}}}$
(b) $\int \frac{d x}{a x+b}, a \neq 0$
(h) $\int \frac{\cos (\pi / x)}{x^{2}} d x$
(c) $\int \frac{\cos \sqrt{t}}{\sqrt{t}} d t$
(i) $\int \cot x d x$
(d) $\int \cos \theta \sin ^{6} \theta d \theta$
(j) $\int \frac{\sin x}{1+\cos ^{2} x} d x$
(e) $\int(1+\tan \theta)^{5} \sec ^{2} \theta d \theta$
(k) $\int \frac{1+x}{1+x^{2}} d x$
(f) $\int e^{x} \sqrt{1+e^{x}}$
(1) $\int \frac{x d x}{\sqrt[4]{x+2}}$
2. § Evaluate the definite integral:
(a) $\int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x$
(f) $\int_{1}^{2} x \sqrt{x-1} d x$
(b) $\int_{-\pi / 2}^{\pi / 2} \frac{x^{2} \sin x}{1+x^{6}} d x$
(g) $\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}}$
(c) $\int_{0}^{13} \frac{d x}{\sqrt[3]{(1+2 x)^{2}}}$
(h) $\int_{0}^{1 / 2} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x$
(d) $\int_{0}^{a} x \sqrt{x^{2}+a^{2}} d x, a>0$
(i) $\int_{0}^{1} \frac{e^{z}+1}{e^{z}+z} d z$
(e) $\int_{0}^{a} x \sqrt{a^{2}-x^{2}} d x$
(j) $\int_{0}^{T / 2} \sin (2 \pi t / T-\alpha) d t$
3. \S Evaluate $\int_{0}^{1} x \sqrt{1-x^{4}} d x$ by making a substitution and interpreting the resulting integral in terms of an area.
4. Evaluate $\int \sec ^{2} \theta \tan \theta d \theta$ in three different ways:
(a) by making the substitution $u=\tan \theta$
(b) by making the substitution $u=\sec \theta$
(c) by making the substitution $u=\cos \theta$
5. What's wrong with the following:

$$
\begin{aligned}
& \int \frac{1}{2 x} d x=\frac{1}{2} \int x^{-1} d x=\frac{1}{2} \ln x \\
& \text { However, } \int \frac{1}{2 x} d x=\int \frac{1}{u} \frac{d u}{2}=\frac{1}{2} \int u^{-1} d u=\frac{1}{2} \ln u=\frac{1}{2} \ln (2 x) \\
& \text { Therefore } \frac{1}{2} \ln x=\frac{1}{2} \ln (2 x), \text { so } \ln x=\ln (2 x) \text {, and therefore } x=2 x \text { for any } x
\end{aligned}
$$

6. § If f is continuous and $\int_{0}^{4} f(x) d x=10$, find $\int_{0}^{2} f(2 x) d x$. Also find $\int_{0}^{2} x f\left(x^{2}\right) d x$.
7. § If a and b are positive numbers, prove that

$$
\int_{0}^{1} x^{a}(1-x)^{b} d x=\int_{0}^{1} x^{b}(1-x)^{a} d x
$$

8. (a) \S If f is continuous on $[0, \pi]$, use the substitution $u=\pi-x$ to prove

$$
\int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x
$$

(b) \S Find $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.
9. § Suppose that the coefficients of the cubic polynomial $p(x)=a+b x+c x^{2}+d x^{3}$ satisfy $0=a+\frac{b}{2}+\frac{c}{3}+\frac{d}{4}$. Prove that the equation $p(x)=0$ has a root between 0 and 1. Hint: What is $\int_{0}^{1} p(x) d x$?
Generalize to an n th-degree polynomial.
10. (a) \S For any number c, let $f_{c}(x)$ be the smaller of the two numbers $(x-c)^{2}$ and $(x-c-2)^{2}$. Find a formula for $\int_{0}^{1} f_{c}(x) d x$ that only depends on c. Hint: draw a picture. Second hint: there are lots of piece-wise functions going on.
(b) \S Let $f_{c}(x)$ be as in the previous question, and define the function $g(c)=\int_{0}^{1} f_{c}(x) d x$. Find the maximum and minimum values of $g(c)$ for $-2 \leq c \leq 2$.

