Math 1A: Discussion Exercises GSI: Theo Johnson-Freyd http://math.berkeley.edu/~theojf/09Spring1A/

Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the following exercises. Be sure to discuss how to solve the exercises — how you get the solution is much more important than *whether* you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: in particular, the last few exercises may be very hard.

Many of the exercises are from Single Variable Calculus: Early Transcendentals for UC Berkeley by James Stewart; these are marked with an \S . Others are my own, or are independently marked.

Areas between curves

- 1. § Sketch the region enclosed by the given curves and find the area.
 - (a) $y = \sin x, y = e^x, x = 0, x = \pi/2$ (b) $y = x^2 - 2x, y = x + 4$ (c) $y = x^2, y = 4x - x^2$ (d) $y = 8 - x^2, y = x^2, x = -3, x = 3$ (e) $y = x^2, y^2 = x$ (f) $x = 2y^2, x = 4 + y^2$ (g) $x = 1 - y^2, x = y^2 - 1$ (h) $y = \sqrt{x}, y = \frac{1}{2}x, x = 9$ (i) $4x + y^2 = 12, x = y$ (j) $y = \sin(\pi x/2), y = x$ (k) $y = 3x^2, y = 8x^2, 4x + y = 4$ (l) $y = \cos x, y = \sin 2x, x = 0, x = \pi/2$ (m) $y = x^2, y = 2/(x^2 + 1)$ (n) $y = 1/x, y = x, y = \frac{1}{4}x$
- 2. § If the birth rate of a population is $b(t) = 2200e^{0.024t}$ people per year and the death rate is $d(t) = 1460e^{0.018t}$ people per year, where in each case t is the number of years since some given time, find the area between the curves y = b(t) and y = d(t) for $0 \le t \le 10$, and explain what the area represents.
- 3. Prove the following fact, first discovered (by other means) by Archimedes:

Consider three equally spaced points on the curve $y = x^2$; let's say $P_1 = ((a - b), (a - b)^2)$, $P_2 = (a, a^2)$, and $P_3 = ((a + b), (a + b)^2)$. Then the area of the of the triangle connecting the three points P_1, P_2, P_3 has exactly three-quarters the area enclosed by the parabola and the line connecting P_1 and P_3 .

- 4. § Sketch the region in the x, y-plane defined by the inequalities $x 2y^2 \ge 0$ and $1 x |y| \ge 0$; find its area.
- 5. § Find the area of the region bounded by the parabola $y = x^2$, the tangent line to this parabola at (1, 1), and the x-axis.
- 6. § Consider the region R under the curve $y = 1/x^2$, $1 \le x \le 4$. Find a number a so that the line x = a bisects the region R. Then find a number b so that the line y = b bisects the region R.

- 7. § For what values of m do the line y = mx and the curve $y = x/(x^2 + 1)$ enclose a region? Find the area of the region (your answer should be a function of m).
- 8. § Below is a graph of the curve $y^2 = x^2(x+3)$. Find the area inclosed in the loop.

- 9. § Find a positive continuous function f such that the area under the graph of f from 0 to t is t^3 for all t > 0.
- 10. § For what m does the line y = mx divide the region bounded by the parabola $y = x x^2$ and the x-axis exactly in half?
- 11. § Suppose the graph of a cubic polynomial intersects the parabola $y = x^2$ when x = 0, x = a, and x = b, where 0 < a < b. If the two regions between the curves have the same area, how is b related to a?