You must always justify your answers. This means: show your work, show it neatly, and when in doubt, use words (and pictures!) to explain your reasoning. No justification $=$ no points.

1. (5 pts) Find y^{\prime} in terms of x and y :

$$
\ln (x+y)=\arctan (\sinh x)+x y^{2}
$$

Perform any obvious simplifications - remember the hyperbolic Pythagorean formula - but don't be worried by a messy answer.
We use implicit differentiation, recalling the Chain and Product rules:

$$
\begin{aligned}
(\ln (x+y))^{\prime} & =\left(\arctan (\sinh x)+x y^{2}\right)^{\prime} \\
\frac{1+y^{\prime}}{x+y} & =\arctan ^{\prime}(\sinh x) \sinh ^{\prime} x+y^{2}+x\left(y^{2}\right)^{\prime} \\
& =\frac{1}{\sinh ^{2} x+1} \sinh ^{\prime} x+y^{2}+2 x y y^{\prime} \\
\frac{1}{x+y}+\frac{1}{x+y} y^{\prime} & =\frac{\cosh ^{\prime} x}{\cosh ^{2} x}+y^{2}+2 x y y^{\prime} \\
\frac{1}{x+y} y^{\prime}-2 x y y^{\prime} & =\frac{1}{\cosh x}+y^{2}-\frac{1}{x+y} \\
y^{\prime} & =\frac{\frac{1}{\cosh x}+y^{2}-\frac{1}{x+y}}{\frac{1}{x+y}-2 x y} \\
& =\frac{x+y+y^{2}(x+y) \cosh x-\cosh x}{(1-2 x y(x+y)) \cosh x}
\end{aligned}
$$

Don't forget to do problem 2, on the other side of this sheet.
2. (5 pts) When a ball (or you on a bicycle) rolls up the side of a parabolic hill, three things can happen: either it runs out of energy before it gets to the top, and so gets as far as it can and then starts rolling back down; or it has more than enough energy to clear the top of the hill and start rolling down the other side; or it has precisely the amount of energy needed to exactly reach the top. In this last situation, it's a physics fact that: the velocity of the ball is proportional to the distance to the top of the hill. Let's say that at time $t=0$, the distance $f(0)$ from the top of the hill is exactly 2 meters, and that the ball at this time is traveling at one meter per minute. At what time t (in minutes) will the ball be precisely one meter from the top of the hill? (Hint: your answer should not be negative.)
The problem says that the velocity of the object is proportional to the distance: $f^{\prime}(t)=k f(t)$. This implies that the distance is an exponential function: $f(t)=f(0) e^{k t}$. Since the ball is rolling towards the top of the hill, the distance is decreasing: k is negative.
We know that $f(0)=2$, and that $\left|f^{\prime}(0)\right|=1$, because the problem said the speed. But this means that $f^{\prime}(0)=-1$. On the other hand, $f^{\prime}(t)=k f(t)$, so $-1=f^{\prime}(0)=k f(0)=k 2$, so $k=-1 / 2$. Thus:

$$
f(t)=2 e^{-t / 2}
$$

The problem asks us to find t such that $f(t)=1$. Thus $1=2 e^{-t / 2}$, so $1 / 2=e^{-t / 2}$, so $2=e^{t / 2}$, and $\ln 2=t / 2$. Thus the time when the ball is one meter from the top of the hill is $t=2 \ln 2$.
3. (bonus) What was your favorite topic from the past week of Calculus (chain rule, implicit differentiation, logarithms, inverse-trigonometric functions, hyperbolic functions, physics exercises, exponential growth, linear approximation, differentials, etc.)? Describe the topic is, and why you like it.

