Math 1A: Quiz 12
GSI: Theo Johnson-Freyd

Name: \qquad
Wednesday, 22 April 2009

You must always justify your answers. This means: show your work, show it neatly, and when in doubt, use words (and pictures!) to explain your reasoning. No justification $=$ no points.

1. (4 pts) Evaluate $\int_{0}^{2}\left(2+\sqrt{4-x^{2}}\right) d x$ by interpreting the definite integral as an area. Do not use the Fundamental Theorem of Calculus.
2. (6 pts) Find an expression for $\int_{1}^{3} e^{x} d x$ as a limit of sums. Do not evaluate the expression.
3. (bonus) Without using the Fundamental Theorem of Calculus, evaluate the limit from question 2. First Hint: You may use the following fact without proof:

$$
\sum_{i=1}^{n} a^{i}=a+a^{2}+\cdots+a^{n}=\frac{a^{n+1}-a}{a-1}=a \frac{a^{n}-1}{a-1} \text { for any } a \neq 1
$$

Second Hint: You will probably need to use L'Hospital's Rule. When you do, you may find that it's easier to first make a substitution: $u=\frac{1}{n}, \lim _{n \rightarrow \infty} f(n)=\lim _{u \rightarrow 0^{+}} f(1 / u)$.

