Math 1B: Discussion Exercises

GSI: Theo Johnson-Freyd
http://math.berkeley.edu/~theojf/09Summer1B/
Find two or three classmates and a few feet of chalkboard. Be sure to discuss how to solve the exercises - how you get the solution is much more important than whether you get the solution. If as a group you agree that you all understand a certain type of exercise, move on to later problems. You are not expected to solve all the exercises: some are very hard.

Many of the exercises are from Single Variable Calculus: Early Transcendentals for UC Berkeley by James Stewart; these are marked with an §. Others are my own, are from the mathematical folklore, or are independently marked.

Here's a hint: drawing pictures - e.g. sketching graphs of functions - will always make the problem easier.

Linear Differential Equations of First Order

An operator is a kind of function that takes functions as inputs and outputs functions. For example, the $\frac{d}{d x}$, which outputs the derivative of its input, is an operator; the multiplication by x is another operator. For now, we will be only interested in differential operators, which are composed of the basic operations and differentiation: $y \mapsto \frac{d y}{d x}+x y$ for example. Today we will focus on first-order differential operators, which do not involve second- and higher derivatives. An operator \mathcal{F} is linear if it has the property that $\mathcal{F}\left[y_{1}(x)+y_{2}(x)\right]=\mathcal{F}\left[y_{1}(x)\right]+\mathcal{F}\left[y_{2}(x)\right]$ for any two functions y_{1} and y_{2}. All the example operators we've listed so far are linear. A first-order linear differential operator is necessarily of the form

$$
\mathcal{F}[y(x)]=a(x) \frac{d y}{d x}+b(x) y(x)
$$

A linear differential equation is a differential equation of the form $\mathcal{F}[y(x)]=c(x)$, where \mathcal{F} is a linear differential operator. By dividing by $a(x)$, and writing $P(x)=b(x) / a(x)$ and $Q(x)=c(x) / a(x)$, it suffices to consider linear differential equations of the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

Let's say that \mathcal{F} is a linear operator, and that $y_{1}(x)$ and $y_{2}(x)$ are both solutions to the equation $\mathcal{F}[y(x)]=c(x)$. Since \mathcal{F} is linear, we have:

$$
\mathcal{F}\left[y_{1}(x)-y_{2}(x)\right]=\mathcal{F}\left[y_{1}(x)\right]-\mathcal{F}\left[y_{2}(x)\right]=c(x)-c(x)=0
$$

Conversely, if $y_{1}(x)$ is a solution to the equation $\mathcal{F}[y(x)]=c(x)$ and $y_{0}(x)$ is a solution to the equation $\mathcal{F}[y(x)]=0$, then $y_{1}(x)+y_{0}(x)$ is a solution to $\mathcal{F}[y(x)]=c(x)$. The linear differential equation $\mathcal{F}[y(x)]=0$ is called homogeneous, and the solutions to it are the homogeneous solutions. We have seen that the difference of any two solutions to $\mathcal{F}[y(x)]=c(x)$ is a homogeneous solution, and conversely, given any particular solution $y_{p}(x)$ to $\mathcal{F}[y(x)]=c(x)$, all other solutions are of the form $y_{p}(x)+y_{0}(x)$ where $y_{0}(x)$ ranges over the set of homogeneous solutions.

To make this more down-to-earth, let's consider a case you already understand. The operator $\frac{d}{d x}$ is a first-order linear differential operator. Its homogeneous differential equation is $\frac{d}{d x}[y]=0$, and the solutions are $y=C$, where C is a constant. Given a function $c(x)$, the solutions to the inhomogeneous equation $\frac{d}{d x}[y(x)]=c(x)$ are given by $\int c(x) d x$; as you know, this set can be described by finding a single antiderivative of $c(x)$ and then adding " $+C$ ".

In any case, we now describe how to find solutions to all first-order linear differential equations. Recall that it suffices to consider equations of the form $y^{\prime}+P y=Q$. The trick is to remember that the product rule turns a product into a sum: $(I(x) y(x))^{\prime}=I(x) y^{\prime}(x)+I^{\prime}(x) y(x)$. So the idea is to find a function $I(x)$ so that $I(x) y^{\prime}(x)+I^{\prime}(x) y(x)=I(x)\left(y^{\prime}(x)+P(x) y(x)\right)$. I.e. we want a function $I(x)$ with $I^{\prime}(x)=P(x) I(x)$. But this is a separable differential equation in $I(x)$: its solutions are of the form $I(x)=e^{\int P(x) d x}$. Thus, we multiply both sides of $y^{\prime}+P y=Q$ by $I=e^{\int P}$, and then we get $(I y)^{\prime}=e^{\int I} Q$, or $I y=\int I Q$, or

$$
y(x)=e^{-\int P(x) d x} \int\left(e^{\int P(x) d x} Q(x)\right) d x
$$

1. When $Q(x)=0$, the linear differential equation $y^{\prime}(x)+P(x) y(x)=0$ is also a separable differential equation. Solve it as a separable equation, and also solve it using the above formula for linear differential equations.
2. To solve a linear differential equation, we had to choose an integrating factor $I(x)=e^{\int P(x) d x}$. But " $\int P(x) d x$ " is defined only up to a constant. If you add a $+C$ to $\int P(x) d x$, what happens to the solution to the differential equation?
3. To solve a linear differential equation, we had to integrate $\int I(x) Q(x) d x$. What happens to the constant of integration here? How does this compare to your answer to problem 1.? Interpret the general solution to $y^{\prime}+P y=Q$ as a "particular solution" plus a "homogeneous solution".
4. § Find the general solutions to the following differential equations:
(a) $x y^{\prime}+y=\sqrt{x}$
(b) $y^{\prime}+y=\sin \left(e^{x}\right)$
(c) $\sin x \frac{d y}{d x}+(\cos x) y=\sin \left(x^{2}\right)$
(d) $x \frac{d y}{d x}-4 y=x^{4} e^{x}$
(e) $(1+t) \frac{d u}{d t}+u=1+t$
(f) $t \ln t \frac{d r}{d t}+r=t e^{t}$
5. § Solve the initial value problem:
(a) $2 x y^{\prime}+y=6 x, x>0, y(4)=20$
(b) $x y^{\prime}=y+x^{2} \sin x, y(\pi)=0$
6. § A tank contains 100 L of water. A solution with salt concentration $0.4 \mathrm{~kg} / \mathrm{L}$ is added at a rate of $5 \mathrm{~L} / \mathrm{min}$. The solution is kept mixed and is drained from the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. If $y(t)$ is the amount of salt (in kilograms) after t minutes, show that y satisfies the differential equation

$$
\frac{d y}{d t}=2 \mathrm{~kg} / \min -\frac{(3 \mathrm{~L} / \min) y}{(100 \mathrm{~L})+(2 \mathrm{~L} / \mathrm{min}) t}
$$

Solve this equation and find the concentration after 20 minutes.
7. § Use the Bernoulli substitution $u=y^{1-n}$ to turn the differential equation $y^{\prime}+P y=Q y^{n}$ into a linear differential equation in u.
8. § Use the method in the previous problem to solve the following differential equations:
(a) $x y^{\prime}+y=-x y^{2}$
(b) $y^{\prime}+\frac{2}{x} y=\frac{y^{3}}{x^{2}}$

