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Find two or three classmates and a few feet of chalkboard. As a group, try your hand at the
following exercises. Be sure to discuss how to solve the exercises — how you get the solution is
much more important than whether you get the solution. If as a group you agree that you all
understand a certain type of exercise, move on to later problems. You are not expected to solve all
the exercises: some are very hard.

Exercises marked with an § are from Single Variable Calculus: Early Transcendentals for UC
Berkeley by James Stewart. Others are my own or are independently marked.

Absolute Convergence
Consider a series

∑
an. We distinguish three cases. First,

∑
an might diverge. The Divergence

Test provides the easiest proof that a series diverges. Second, it’s possible that
∑

an converges but
that

∑
|an| does not, because the negative terms in

∑
an cancel the positive terms. In this case,

the series
∑

an is said to be conditionally convergent. In the third case,
∑
|an| converges, and∑

an is called absolutely convergent. Of course, if an is already a positive sequence, then |an| = an

and so we have only the two cases.
Why are there only these three cases? In particular, why can’t we have a series such that

∑
|an|

converges by
∑

an diverges? One proof goes like this: let (an)+ = an is an is positive and 0 if an is
negative, and let (an)− = −an if an is negative and 0 if an is positive. I.e. (an)+ = 1

2(an + |an|) and
(an)− = 1

2(|an| − an). Thus, (an)+ and (an)− are each positive sequences with an = (an)+ − (an)−
and |an| = (an)+ + (an)−. In particular, (an)± are each less than or equal to |an|. If

∑
|an|

converges, then each of
∑

(an)± must converge by the comparison test. But the difference of
convergent series converges, and

∑
an =

∑
(an)+ −

∑
(an)−.

Riemann proved the following theorem. Assume that
∑

an converges absolutely, and that bn

is any rearrangement of the sequence an. Then
∑

bn converges absolutely, to the same value as∑
an. The proof is in two parts. First, we prove the theorem for positive series, by appealing

to the monotone sequence theorem. Then we use the fact that
∑

an =
∑

(an)+ −
∑

(an)− =∑
(bn)+ −

∑
(bn)− =

∑
bn, since (bn)± is a rearrangement of (an)±.

But it is the converse of Riemann’s theorem that is amazing. Assume that
∑

an converges
conditionally. Then for any number S, there is a rearrangement bn of the sequence an such that∑

bn = S. Again we only outline the proof. We saw that if
∑

(an)+ and
∑

(an)− both converge,
then

∑
an converges absolutely. So at least one of

∑
(an)± must diverge. But if only one diverges,

then
∑

an = (converge) − (diverge) or the other way around, which diverges. So both
∑

(an)+
and

∑
(an)− diverge since we assumed that

∑
an converged conditionally. This means that for any

number M , and for any number J , there is a number K such that M ≤
∑K

n=J(an)+, and similarly
for (an)−. Thus, to make the sequence bn, we begin by adding only the positive terms of an until
the partial sum is more than S. Now we subtract off the negative terms until the partial sum is less
than S. Add, subtract, etc. So if the sequence of partial sums converges at all, it must converge to
S. But does it converge? Well, let’s be trickier, and always stop adding positive or negative terms
just when we pass S. Then the difference from the partial sum to S is never more than some ak,
and lim ak = 0 (since

∑
an converges), so the difference get closer and closer to S.

1. We’ve introduced the following tests so far: Divergence Test, Integral Test, Comparison Test,
Limit Comparison Test, Alternating Series Test. By thinking about the conditions of each
test, classify the tests based on what they can say about a series. For example, the integral test
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only applies to positive series, and so cannot decide whether a series converges conditionally;
it can decide whether a series converges absolutely or not.

2. Recall the alternating harmonic series
∑∞

1 (−1)n−1/n. The AST proves that it converges to
some number A, and the error estimate prove that A > 0. We gave a picture proof last time
that A = ln 2. Does

∑∞
1 (−1)n−1/n converge conditionally or absolutely?

Write out the first ten or so terms of
∑∞

1 (−1)n−1/n. Below that, write out the first five or
so terms of 1

2

∑∞
1 (−1)n−1/n, spaced so that the nth term of 1

2

∑∞
1 (−1)n−1/n lies beneath

the 2nth term of
∑∞

1 (−1)n−1/n. Add in columns to get a new series. This new series must
converge, since it is the sum of convergent series, to A + 1

2A = 3
2A. On the other hand, prove

that the new series is a rearrangement of
∑∞

1 (−1)n−1/n.

We now describe and prove a generalization of the Alternating Series Test. We consider a series
of the form

∑
anbn satisfying the following conditions: (1) bn is a positive decreasing sequence

with lim bn = 0; (2) there is some number M so that all the partial sums sN =
∑N−1

0 an satisfy
|sN | ≤M . Then we will prove that the series

∑
anbn converges. This generalizes the AST, where

we have an = (−1)n, and so sN is either 1 or 0 and M = 1.
Let’s consider the partial sum

∑N−1
0 anbn. In the notation from last week, se could write this

as (S[ab])N ; the sequence of partial sums is a “discrete integral” of the sequence (ab)n = anbn. If
we really think of it as an integral, then it’s reasonable to try to use some sort of “integration by
parts” to compute it. Let cn and dn be sequences, and recall the notation (Dc)n = cn+1−cn for the
discrete derivative. Then the discrete product rule says that D(cd) = (Dc)d + c(Dd) + (Dc)(Dd).
We can make this look a little bit more like the product rule, at the cost of shifting one of the
sequences. Using the fact that dn+1 = dn + (Dd)n, we have D(cd)n = (Dc)ndn+1 + cn(Dd)n. Let’s
now let an = (Dc)n and bn = dn+1. If we also assume that c0 = 0, then we have cn = San. Then
we have:

D(cd)n = (Dc)ndn+1 + cn(Dd)n

D((Sa)nbn−1) = anbn + (Sa)n(Db)n−1

anbn = D((Sa)nbn−1)− (Sa)n(Db)n−1

S(anbn) = SD((Sa)nbn−1)− S((Sa)n(Db)n−1)
= (Sa)nbn−1 − S((Sa)n(Db)n−1)

We have used condensed notation. In the Σ notation, this says:
N−1∑
n=0

anbn =

(
N−1∑
n=0

an

)
bN−1 −

N−1∑
n=0

((
n−1∑
k=0

ak

)
(bn − bn−1)

)
We are interested in the limit as N → ∞ of the LHS. But on the RHS, the first term is the
limit of something at most M times something going to 0, so vanishes by the Squeeze Theorem.
(This is where we use that bn → 0.) We will prove that the second term converges absolutely.
Indeed, the absolutely value of each summand is a number at most M times bn − bn−1, which is
positive since b is decreasing. Thus, we use the comparison test, comparing the second sum to∑N−1

1 M(bn − bn−1) = Mb0 −MbN−1 → Mb0. (The n = 0th term vanishes.) Thus both sums on
the RHS have finite limits, so the LHS converges.

3. Prove that if g(x) is a positive decreasing function and f(x) is a continuous function such
that there is some M with M ≥

∣∣∫ x
0 f(t)dt

∣∣ for every x, then
∫∞
0 f(x)g(x)dx converges. Use

this to prove that
∫∞
0

sin x
x dx converges.
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