Math 1B: Optional Quiz GSI: Theo Johnson-Freyd

Give yourself 15 minutes for this quiz.

1. Determine whether the integral $\int_2^3 \frac{dx}{\sqrt{3x-x^2}}$ converges or diverges. Prove your answer. The denominator is zero at x = 0 and x = 3; only x = 3 is in the domain. The integrand is $1/\sqrt{x(3-x)}$, and when $x \approx 3$, this is $1/\sqrt{3(x-3)}$. The integral $\int_2^3 1/\sqrt{x-3} \, dx = \int_2^3 (x-3)^{-1/2} \, dx$ converges by the p-test. So we expect that the original integral also converges. Thus, let us try to bound it above so that we can use the comparison test. When $x \in [2,3]$, we know that $1/\sqrt{x} \leq 1$. So:

$$\frac{1}{\sqrt{3x - x^2}} = \frac{1/\sqrt{x}}{\sqrt{3 - x}} \le \frac{1}{\sqrt{3 - x}}$$

Moreover, $1/\sqrt{x(3-x)}$ is positive for $x \in [2,3)$. Thus we can use the comparison test. The integral $\int_2^3 (3-x)^{-1/2} dx = \int_0^1 u^{-1/2} du$ with u = 3-x, which definitely converges by the *p*-test, as 1/2 < 1. \Box