
Math 1B: Quiz 11 ANSWERS
GSI: Theo Johnson-Freyd Monday, 10 August 2009

You must always justify your answers. This means: show your work, show it neatly, and when
in doubt, use words (and pictures!) to explain your reasoning. No justification = no points.

1. (10 pts) Find a power series representation (centered at 0) of the function f(x) = ln(1 + x
2 ).

Your final answer must be in the form
∑

cnxn. Find the interval of convergence of your series.

The easy way to do this quiz is to have some prior knowledge about power series for ln:
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We can now compute the interval of convergence. We use the ratio test, for example, to
compute the radius of convergence:
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At x = 2, the sum is alternating, and indeed is the Alternating Harmonic Series. It passes the
Alternating Series Test since 1

n is a decreasing positive sequence with lim 1
n = 0. At x = 2,

the sum is the (negative of the) Harmonic Series, and diverges by the integral test. Thus the
interval of convergence is:

x ∈ (−2, 2]


