
Math 2135: Linear Algebra

Assignment 2

Solutions

1. (a) Suppose that {v1, v2, v3, v4} spans a vector space V . Show that {v1 + v2, v2 +
v3, v3 + v4, v4} also spans V .

Let v ∈ V be a vector. Since {v1, v2, v3, v4} spans, we can find numbers α1, α2, α3, α4 ∈ F
such that

v = α1v1 + α2v2 + α3v3 + α4v4.

This can be rearranged to

v = α1(v1 + v2)−α1v2 +α2v2 +α3v3 +α4v4 = α1(v1 + v2) + (α2 −α1)v2 +α3v3 +α4v4.

Repeating the trick gives:

v = α1(v1 + v2) + (α2 − α1)(v2 + v3) + (α3 − α2 + α1)(v3 + v4) + (α4 − α3 + α2 − α1)v4.

Thus we have found numbers α′
1, α

′
2, α

′
3, α

′
4 such that v = α′

1(v1+v2)+α
′
2(v2+v3)+α

′
3(v3+

v4)+α′
4v4, namely α′

1 = α1, α
′
2 = α2−α1, α

′
3 = α3−α2+α1, and α′

4 = α4−α3+α2−α1.

(b) Suppose that {v1, v2, v3, v4} is linearly independent. Show that {v1 + v2, v2 +
v3, v3 + v4, v4} is also linearly independent.

Suppose that we have found α1, α2, α3, α4 such that

0 = α1(v1 + v2) + α2(v2 + v3) + α3(v3 + v4) + α4v4.

We wish to show that α1 = α2 = α3 = α4 = 0.

Well, expanding and grouping like terms, we find:

0 = α1v1 + (α1 + α2)v2 + (α2 + α3)v3 + (α3 + α4)v4.

Since {v1, v2, v3, v4} is assumed linearly independent, we learn that 0 = α1 = α1 + α2 =
α2 +α3 = α3 +α4. But if 0 = α1 and 0 = α1 +α2, then 0 = α2. Repeating the argument
with the other equations gives 0 = α3 = α4.

2. For which numbers t is the set {(3, 1, 4), (2,−3, 5), (5, 9, t)} a basis of R3?

This set is a basis provided it is spanning and linearly independent. Suppose that linear
independence fails. Then we would have numbers a, b, c ∈ R, not all zero, such that

(0, 0, 0) = a(3, 1, 4) + b(2,−3, 5) + c(5, 9, t) = (3a+ 2b+ 5c, a− 3b+ 9c, 4a+ 5b+ tc).
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Comparing the first two terms and solving for c gives c = −3
5a−

2
5b. Comparing the second

terms and solving for c gives c = −1
9a+ 1

3b. Let’s set these equal and rearrange the equation:

−3

5
a− 2

5
b = −1

9
a+

1

3
bÅ

−3

5
+

1

9

ã
a =

Å
2

5
+

1

3

ã
bÅ

−3 +
5

9

ã
a =

Å
2 +

5

3

ã
b

(−27 + 5) a = (18 + 15) b

−22a = 33b

−2

3
ab

In particular, either both a and b are zero, in which case c is, or neither a nor b is. In other
words, if we are to find a nontrivial linear dependence, then we’d better have a 6= 0, and so
we might as well devide through by a and then redefine b ; b

a and c ; c
a , and just decide

that a = 1. Then b = −2
3 , and looking again at c = −3

5a−
2
5b = −1

9a+ 1
3b gives c = −1

3 .

This was just from looking at the first two terms. To have a linear dependence, we would
also need

0 = 4a+ 5b+ tc = 4− 10

3
− t

3

or equivalently t = 2.

We have shown: The set {(3, 1, 4), (2,−3, 5), (5, 9, t)} is linearly independent if and only if
t 6= 2.

We showed in class that a linearly independent set is a basis if and only if it has the correct
size. This set does have the correct size to be a basis. The set {(3, 1, 4), (2,−3, 5), (5, 9, t)} is
a basis if and only if t 6= 2.

3. Let U be the subspace of C5 defined by

U := {(z1, z2, z3, z4, z5) ∈ C5 s.t. 6z1 = z2 and z3 + 2z4 + 3z5 = 0}.

(a) Find a basis for U .

Note that dimC5 = 5 and so U is finite-dimensional. So we can build a basis from
the ground up: start with the empty set ∅, and include vectors, while staying linearly
independent the whole time, until we have to stop.

Span(∅) = {0} 6= U . So we include some nonzero vector. For example, (1, 6, 0, 0, 0) ∈ U .

Span((1, 6, 0, 0, 0)) is not all of U . For example, (0, 0, 2,−1, 0) ∈ U r Span((1, 6, 0, 0, 0)).

Span((1, 6, 0, 0, 0), (0, 0, 2,−1, 0)) is not all of U . For example, (0, 0, 3, 0,−1) ∈ U r
Span((1, 6, 0, 0, 0), (0, 0, 2,−1, 0)).

The set {(1, 6, 0, 0, 0), (0, 0, 2,−1, 0), (0, 0, 3, 0,−1)} is easily seen to be in U . Let’s con-
firm that it is linearly independent. Well,

a(1, 6, 0, 0, 0) + b(0, 0, 2,−1, 0) + c(0, 0, 3, 0,−1) = (a, ?, ?,−b,−c)

and I didn’t feel like working out the middle two entries. The only way for this sum to
equal (0, 0, 0, 0, 0) is if a = b = c = 0.
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We claim that {(1, 6, 0, 0, 0), (0, 0, 2,−1, 0), (0, 0, 3, 0,−1)} spans U . Suppose that v =
(z1, z2, z3, z4, z5) ∈ U . Consider the vector

v′ = z1(1, 6, 0, 0, 0)− z4(0, 0, 2,−1, 0)− z5(0, 0, 3, 0,−1) = (z1, 6z1,−2z4 − 3z5, z4, z5).

Then v′ and v certainly agree in the first, fourth, and fifth entries. The second entry of
v′−v is 6z1−z2, which must be zero if v ∈ U . Similarly, the third entry is z2 +2z4 +3z5,
which also vanishes by definition of U .

So v′ = v, and we have shown that {(1, 6, 0, 0, 0), (0, 0, 2,−1, 0), (0, 0, 3, 0,−1)} spans.
Since it was also linearly independent, it is a basis of U .

Remark: This is not the only solution.

(b) Extend the basis in part (a) to a basis for C5.

We start with our basis {(1, 6, 0, 0, 0), (0, 0, 2,−1, 0), (0, 0, 3, 0,−1)} and continue to in-
clude vectors. Note that (0, 1, 0, 0, 0) 6∈ U = Span{(1, 6, 0, 0, 0), (0, 0, 2,−1, 0), (0, 0, 3, 0,−1)}.
So let’s add it in. Another vector not in there: (0, 0, 1, 0, 0).

We claim that {(1, 6, 0, 0, 0), (0, 0, 2,−1, 0), (0, 0, 3, 0,−1), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)} is a
basis. Indeed:

a(1, 6, 0, 0, 0)+b(0, 0, 2,−1, 0)+c(0, 0, 3, 0,−1)+d(0, 1, 0, 0, 0)+e(0, 0, 1, 0, 0) = (a, 6a+d, 2b+3c+e,−b,−c).

For this sum to equal (0, 0, 0, 0, 0) we must have a = b = c = 0, in which case also
d = e = 0. So it is linearly independent. Conversely, the sum does equal (z1, z2, z3, z4, z5)
provided a = z1, b = −z4, c = −z5, d = z2 − 6a = z2 − 6z1, and e = z3 − 2b − 2c =
z3 + 2z4 + 3z5.

Remark: This is not the only solution.

4. We ended lecture on Monday having stated the following theorem, but we didn’t
supply a complete proof:

Theorem: Let V be a finite-dimensional vector space, and U1, U2 ⊂ V two
vector subspaces. Then

dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2).

This exercise asks you to work through the remainder of the proof. A complete
proof of this theorem can be found in Linear Algebra Done Right, and you are
welcome to read that discussion while thinking about this exercise. However,
your answers must be in your own words. I recommend that you close the book
before starting to write up your answers.

To review, at the end of lecture we said the following. Since U1 ∩ U2 ⊂ V is a
vector subspace, and since V is finite-dimensional, we know that U1 ∩ U2 is also
finite-dimensional. Suppose that A is any basis for U1 ∩ U2. Then we argued that
we can extend A to a finite basis A ∪ B for U1 and we can extend A to a finite
basis A ∪ C for U2. We asserted, but did not prove, that A ∪ B ∪ C is a basis for
U1 + U2.

Let’s give names: A = {u1, . . . , uk}, B = {v1, . . . , vm}, and C = {w1, . . . , wn}.
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(a) Implicit in the notation is that A and B are disjoint, and that A and C are
disjoint. Explain why B and C are disjoint. (Two sets are disjoint if their
intersection is empty, i.e. if there are no elements in common.)

By definition, the elements of C are in U2 but not U1, whereas the elements of B are in
U1 (but not U2).

(b) Explain why the assertion “A∪B∪C is a basis for U1+U2” implies the theorem.

The dimension of a subspace is the size of any of its bases. Since they are bases,
#A = dim(U1∩U2), whereas dimU1 = #(A∪B) = #A+ #B and dimU2 = $(A∪C) =
#A+ #C. Thus

#(A ∪B ∪ C) = #A+ #B + #C = (#A+ #B) + (#A+ #C)−#A,

which is equal to the right-hand side of the equation we want to prove. On the other
hand, if A∪B∪C is a basis for U1 +U2, then also #(A∪B∪C) is equal to the left-hand
side of the equation we want to prove.

(c) Explain why Span(A ∪B ∪ C) = U1 + U2. In other words, explain why if

v = α1u1 + · · ·+ αkuk + β1v1 + · · ·+ βmvm + γ1w1 + . . . γ1wk

where all the α’s, β’s, and γ’s are in F, then v ∈ U1 + U2, and conversely why
any v ∈ U1 +U2 can be written as such a linear combination for some α’s, β’s,
and γ’s in F.

If v ∈ U1 + U2, then we can find — we’ve run out of letters — let’s say x ∈ U1 and
y ∈ U2 such that v = x + y. Now, since A ∪ B is a basis for U1, we can find numbers
λ1, . . . , λk, µ1, . . . , µm such that

x = λ1u1 + · · ·+ λkuk + µ1v1 + · · ·+ µmvm.

Similarly, since A ∪ C is a basis for U2, we can find numbers ρ1, . . . , ρk, ν1, . . . , νn such
that

y = ρ1u1 + · · ·+ ρkvk + ν1w1 + · · ·+ νnwn.

Adding the two expressions gives

v = x+ y = (λ1 + ρ1)u1 + · · ·+ (λk + ρk)uk + µ1v1 + · · ·+ µmvm + ν1w1 + · · ·+ νnwn.

In other words, we can win by setting αi = λi + ρi, βi = µi, and γi = νi.

(d) (The most interesting part.) Explain why A ∪B ∪ C is linearly independent.
In other words, we want to show that if

0 = α1u1 + · · ·+ αkuk + β1v1 + · · ·+ βmvm + γ1w1 + . . . γ1wk

for some α’s, β’s, and γ’s in F, then all the α’s, β’s, and γ’s are 0. So assume
that you have found some such solution, and let

u := α1u1 + · · ·+ αkuk

v := β1v1 + · · ·+ βmvm

w := γ1w1 + . . . γ1wk
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Explain why v ∈ U1. Explain why also v ∈ U2. Conclude that v ∈ U1 ∩ U2.
Explain why this implies that there are numbers δ1, . . . , δk ∈ F such that

v = δ1u1 + · · ·+ δkuk.

Explain why this implies that either all the βs are zero or that A∪B is linearly
dependent. (Consider the difference of two expressions for v.)

But A ∪ B is linearly independent by assumption (which assumption?), so
all the βs are zero. Explain why this, together with the assumption (which
one?) that A ∪ C is linearly independent, implies that all the αs and all the
γs are zero.

With these u, v, w, we have
0 = u+ v + w.

Note that v ∈ Span(B) ⊂ Span(A∪B) = U1. Note also that u+w ∈ Span(A∪C) = U2.
But v = −(u+ w), and so v ∈ U2. So v ∈ U1 ∩ U2.

But A is a basis for U1 ∩ U2, so there must exist δ’s as above. So

0 = v−v = (δ1u1+· · ·+δkuk)−(β1v1+· · ·+βmvm) = δ1u1+· · ·+δkuk+(−β1)v1+· · ·+(−βm)vm.

If any of the δ’s or β are nonzero, then we have found a linear dependency in A ∪ B,
which we assumed was a basis. So all the δs and all the βs are zero, and so v = 0.

But then our original assumed dependency becomes

0 = u+ w = α1u1 + · · ·+ αkuk + γ1w1 + . . . γ1wk.

On the other hand, since A ∪ C is linearly independent, it must happen that all the αs
and all the γs vanish.

5. Suppose that V is finite-dimensional and contains three vector subspaces U1, U2, U3.
The theorem in Exercise 4 might lead you to think that

dim(U1 + U2 + U3)
?
= dim(U1) + dim(U2) + dim(U3)− dim(U1 ∩ U2)

− dim(U1 ∩ U3)− dim(U2 ∩ U3) + dim(U1 ∩ U2 ∩ U3),

but this formula is not true in general.

(a) Explain why V = R2, with U1, U2, U3 any three pairwise-distinct 1-dimensional
subspaces, provides a counterexample.

If U1, U2 ⊂ R2 are both one-dimensional, then either they are equal or they intersect
only at the origin. In other words, if U1, U2, U3 any three pairwise-distinct 1-dimensional
subspaces, then we definitely have U1 ∩ U2 = U1 ∩ U3 = U2 ∩ U3 = U1 ∩ U2 ∩ U3 = {0},
and all of these spaces have dimension 0. So the supposed equation becomes

dim(U1 + U2 + U3)
?
= 1 + 1 + 1− 0− 0− 0 + 0 = 3.

But the sum U1 + U2 + U3 is a subspace of R2, and so cannot have dimension > 2. So
the supposed equation is false.

In fact, if U1, U2 are distinct one-dimensional subspaces in R2, then we already see from
the theorem in Exercise 4 that dim(U1 + U2) = 1 + 1 − 0 = 2, and so U1 + U2 = R2.
Thus U1 + U2 + U3 = R2 as well.
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(b) Suppose you tried to repeat the proof from Exercise 4 but with three sub-
spaces. Which step of the proof fails? Explain.

The step that fails is the “interesting” linear independence part. Let us explain:

Some subscripts will help manage the alphabet soup. Let’s choose a basis A123 for
U1 ∩ U2 ∩ U3. We can extend it to a basis A123 ∪A12 for U1 ∩ U2, to a basis A123 ∪A13

for U1 ∩U3, and to a basis A123 ∪A23 for U2 ∩U3. Moreover, a version of the argument
from Exercise 4 shows that A123 ∪ A12 ∪ A13 is a linearly independent set in U , and so
extends to a basis A123 ∪ A12 ∪ A13 ∪ A1 for U1. By the same token, there are bases
A123 ∪A12 ∪A23 ∪A2 for U2 and A123 ∪A13 ∪A23 ∪A3 for U3.

Then, to prove the supposed equation, it would suffice to prove that A123 ∪A12 ∪A13 ∪
A23 ∪A1 ∪A2 ∪A3 is a basis for U1 + U2 + U3.

It is a spanning set, by a version of the argument from Exercise 4.

But when we try to prove linear independence, we run into trouble. For example, we
might get into a situation where some vector v can be shown to be in U1, and also in
U2 + U3. If we could show it was in U1 ∪ U3, then we could win: we’d be able to show
it was zero through a version of the argument from Exercise 4. But all we can do is get
into U2 + U3.

6. Suppose, in Exercise 4, that V is infinite-dimensional. Does this really matter
for the theorem? Explain. Hint: What happens if, even though V is infinite-
dimensional, U1 and U2 are both finite-dimensional? What happens if one or
both of them is infinite-dimensional?

Suppose that U1 and U2 are both finite-dimensional. Then so is U1 ∩ U2, and we can simply
proceed with the argument: choose bases; show that something is a basis for something.

Suppose that dimU1 = ∞ but dimU2 < ∞. Then dim(U1 + U2) is also infinite, whereas
dim(U1 ∩ U2) is finite, and the equation we want to prove is the definitely-true statement

∞ =∞+ (finite)− (finite).

Ditto with the roles of U1 and U2 switched.

If U1 and U2 are both infinite-dimensional, then we have

∞ =∞+∞− dim(U1 ∩ U2).

If U1 ∩U2 is finite-dimenisonal, then this is definitely a true statement. If dim(U1 ∩U2) =∞,
then probably we might simply throw our hands in the air and decide that the statement has
no content.

Or we might decide: whatever these dimensions are, we definitely always have dim(U2) ≥
dim(U1 ∩ U2). So we should always interpret “dim(U2)− dim(U1 ∩ U2)” as being “positive,”
perhaps infinite, even if it is ∞ −∞ and so not a specific number. Then we could decide
that, if dimU1 =∞, then the right-hand side is ∞+ (positive), which is undeniably infinite.
With this interpretation, the theorem remains true in all cases.
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