
Math 2135: Linear Algebra

Assignment 3

Solutions

1. There is an interesting function C → C called complex conjugation and denoted
z 7→ z̄. It takes a complex number z = a + b

√
−1, and a, b ∈ R, to the conjugate

number z̄ = a− b
√
−1.

(a) Think of V = C as a vector space over F = R. Is complex conjugation a linear
map?

Yes. Given complex numbers z1, z2 ∈ V = C, we do have z1 + z2 = z1 + z2, so complex
conjugation respects vector addition. Furthermore, if λ ∈ F = R, and if z ∈ V = C,
then λz = λz = λz, so complex conjugation respects scalar multiplication.

(b) Think of V = C as a vector space over F = C. Is complex conjugation a linear
map?

No. Let z ∈ V = C be a nonzero complex number, for example z = 1. Let λ ∈ F = C be
a complex number which is not purely real, for example λ =

√
−1. Then λz = λz 6= λz.

So complex conjugation does not respect scalar multiplication.

2. Given any b, c ∈ R, define a function T : R3 → R2 by

T (x, y, z) = (2x− 4y + 3z + b, 6x+ cxyz).

Show that T is linear if and only if b = c = 0.

Let us check whether T respects vector addition. In other words, given two vectors v1 =

(x1, y1, z1) and v2 = (x2, y2, z2) ∈ R3, we wish to check whether T (v1 + v2)
?
= T (v1) + T (v2).

Spelled out, this is asking whether

(2x1 − 4y1 + 3z1 + b, 6x1 + cx1y1z1) + (2x2 − 4y2 + 3z2 + b, 6x2 + cx2y2z2)

?
= (2(x1 + x2)− 4(y1 + y2) + 3(z1 + z2) + b, 6(x1 + x2) + c(x1 + x2)(y1 + y2)(z1 + z2))

is always an equality of vectors in R2. Matching the coordinates, we are asking:

2x1 − 4y1 + 3z1 + b+ 2x2 − 4y2 + 3z2 + b
?
= 2(x1 + x2)− 4(y1 + y2) + 3(z1 + z2) + b

6x1 + cx1y1z1 + 6x2 + cx2y2z2
?
= 6(x1 + x2) + c(x1 + x2)(y1 + y2)(z1 + z2)

After some light rearranging, we see that the first equation holds if and only if

2b
?
= b

and the second holds if and only of, for every x1, y1, z1, x2, y2, z2 ∈ R, we have

c(x1y1z1 + x2y2z2)
?
= c(x1 + x2)(y1 + y2)(z1 + z2).
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The first equation holds if and only if b = 0. The second holds if and only if c = 0: the if
direction is obvious, and the only if direction is readily seen by setting x1 = · · · = z2 = 1.

We have thus shown that T respects vector addition if and only if b = c = 0. It remains to
show that if b = c = 0, then T respects scalar multiplication. But, letting λ ∈ R, and taking
b = c = 0, we compute:

Tλ(x, y, z) = T (λx, λy, λz) = (2λx− 4λy + 3λz, 6λx) = λ(2x− 4y + 3z, 6x) = λT (x, y, z).

3. Let V ⊂ RR be the vector space of all differentiable functions. Given f ∈ V , denote
its derivative by f ′.

(a) Is the function V → R2 that sends f 7→
Ä
f(1) + f ′(2),

∫ 3
0 f(x) dx

ä
linear? Why or

why not?

Yes , this function is linear. To see this, it is helpful to inspect the pieces of the function.

First, for any real number r ∈ R, the map V → R sending f 7→ f(r) is linear. Indeed,
the function f + g is defined so that (f + g)(r) = f(r) + g(r) for every r, and for λ ∈ R
the function λf is defined so that (λf)(r) = λf(r) for every r. So for example f 7→ f(1)
is a linear transformation.

Second, taking derivatives is linear. Indeed, (f+g)′ = f ′+g′ and (λf)′ = λ′f+λf ′ = λf ′

since λ ∈ R is constant (so λ′ = 0). Since evaluating is also linear, we see that f 7→ f ′(2)
is linear.

Third, definite integrals are linear: for fixed real numbers a, b ∈ R, and for any integrable
functions f, g, we know that

∫ b
a (f(x) + g(x)) dx =

∫ b
a f(x) dx +

∫ b
a g(x) dx, and for any

integrable function f and any real number λ, we know that
∫ b
a λf(x) dx = λ

∫ b
a f(x) dx.

(All differential functions are continuous, and all continuous functions are integrable.)

Sums of linear functions are linear. And the addition and scalar multiplication in R2

are defined component wise: this implies that if you have a transformation valued in R2

such that each component is linear, then the whole transformation is linear.

More directly, what we are saying is: For any differentiable functions f, g and any
constant λ,Ç

(f + g)(1) + (f + g)′(2),

∫ 3

0
(f + g)(x) dx

å
=

Ç
f(1) + f ′(2),

∫ 3

0
f(x) dx

å
+

Ç
g(1) + g′(2),

∫ 3

0
g(x) dx

å
,Ç

λf(1) + λf ′(2),

∫ 3

0
λf(x) dx

å
= λ

Ç
f(1) + f ′(2),

∫ 3

0
f(x) dx

å
.

(b) Is the function V → R that sends f 7→
∫ 3
0 x

2f(x) dx linear? Why or why not?

Yes , this function is linear. We have already remarked that the assignment f 7→∫ 3
0 f(x) dx is linear. The question asks about what you get if you precompose this

operation with the assignment f(x) 7→ x2f(x). In general, fix any differentiable function
h(x). Then the function V → V which sends f 7→ hf is linear:

h(x) (f(x) + g(x)) = h(x) f(x) + h(x) g(x), h(x)λf(x) = λh(x) f(x), ∀f, g ∈ V, λ ∈ R

More directly, what we are saying is: For any differentiable functions f, g and any
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constant λ,∫ 3

0
x2(f(x) + g(x)) dx =

∫ 3

0

Ä
x2f(x) + x2g(x)

ä
,dx =

∫ 3

0
x2f(x) dx+

∫ 3

0
x2g(x) dx,∫ 3

0
x2λf(x) dx =

∫ 3

0
λx2f(x) dx = λ

∫ 3

0
x2f(x) dx.

(c) Is the function V → R that sends f 7→ f ′(2)2 linear? Why or why not?

No , this function is not linear. Let us write T for this operation, i.e. T (f) = f ′(2)2.
Now consider the case f(x) = g(x) = x. Then f ′(2) = g′(2) = 1, and so

T (f) + T (g) = 1 + 1 = 2.

On the other hand, (f + g)(x) = 2x, and so

T (f + g) = T (2x) = 22 = 4 6= 2.

Thus T (f + g) 6= T (f) + T (g) for some f, g ∈ V , and so T does not respect vector
addition.

T also does not respect scalar multiplication, which can be seen for example by taking
λ = 2 and f(x) = x.

Remark: There do exist functions f, g such that T (f + g) = T (f) + T (g), for example
f = g = 0. There also exist numbers λ such that T (λf) = λT (f), for example λ = 0
or λ = 1. However, for most functions f, g and for most numbers λ, you will find that
T (f + g) 6= T (f) + T (g) and T (λg) 6= λT (f).

4. Suppose T : F4 → F2 is a linear map such that

ker(T ) = {(x1, x2, x3, x4) s.t. x1 = 5x2 and x3 = x1 + x4}.

Show that T is surjective.

We know that dimF4 = 4 and dimF2 = 2. We also know that

dimF4 = dim kerT + dim imT.

Thus, if we can show that dim kerT = 2, then we will know that dim imT = 2. But imT ⊆ F2,
and so if dim imT = 2, then we must have equality imT = F2.

It thus remains to understand kerT . We claim that v1 := (5, 1, 5, 0) and v2 := (0, 0, 1, 1)
are together a basis for kerT . They are obviously linearly independent, and obviously both
in kerT . So the only thing to check is whether they span kerT . Well, suppose that v =
(x1, x2, x3, x4) ∈ kerT . Then x1 = 5x2 and x3 = 5x2 + x4. Set α1 := x2 and α2 := x4. Then

α1v1 + α2v2 = x2(5, 1, 5, 0) + x4(0, 0, 1, 1) = (5x2, x2, 5x2, 0) + (0, 0, x4, x4)

= (5x2, x2, 5x2 + x4, x4) = (x1, x2, x3, x4) = v.

So these two vectors span, and hence are a basis for, kerT . So dim kerT = 2, which is what
we wanted to prove.
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5. (a) Find a linear map T : F2 → F2 such that ker(T ) = im(T ) or show that one does
not exist.

For example,
T (x, y) := (y, 0)

has kerT = {(x, y) : y = 0} = {(x, 0)}, where x is arbitrary, whereas imT = {(y, 0)}
where y is arbitrary. So kerT = imT .

(b) Find a linear map T : F3 → F3 such that ker(T ) = im(T ) or show that one does
not exist.

There does not exist such a map. Indeed, for any map T : F3 → F3, we definitely have

3 = dimF3 = dim kerT + dim imT.

Suppose that kerT = imT and that n = dim kerT = dim imT . Then we would have
3 = 2n, i.e. n = 3

2 . But dimensions are always integers.

6. Let S : U → V and T : V → W be linear maps. Show that if any two of the three
maps S, T , and their composition TS : U →W , are invertible, then so is the third
one.

Suppose first that S and T are invertible, with inverses S−1 and T−1 respectively. In other
words, SS−1 = IV , S−1S = IU , TT−1 = IW , and T−1T = IV . Set X := S−1T−1. We claim
that X is an inverse to TS. In other words, we claim that XTS = IU and TSX = IW . We
now check these:

S−1T−1TS = S−1IV S = S−1S = IU , TSS−1T−1 = TIV T
−1 = IW .

These equations confirm that X = S−1T−1 is indeed an inverse to TS

Next, suppose that S and TS are invertible, with inverses S−1 and (TS)−1 respectively.
In other words, SS−1 = IV , S−1S = IU , (TS)−1TS = IU , and TS(TS)−1 = IW . Set
X := S(TS)−1. We wish to claim that X is an inverse to T , i.e. that TX = IW and
XT = IV . One of these is easy:

TX = TS(TS)−1 = IW .

To show that X is an inverse to T , we must also show that XT = IV . This is harder because
XT = S(TS)−1T . If we could move the S over next to the T , then we’d be able to use
the equation (TS)−1TS = IU . Well, let’s remember that we have access to S−1 such that
SS−1 = IV . Then:

XT = S(TS)−1T = S(TS)−1TIV = S(TS)−1TSS−1 = SIUS
−1SS−1 = IV .

So indeed X is an inverse to T .

The third case is almost the same as the second case. Suppose that T and TS are invertible,
with T−1 and (TS)−1 respectively. We claim that X := (TS)−1T is an inverse to S. To check
this, we compute:

XS = (TS)−1TS = IU ,

SX = S(TS)−1T = IV S(TS)−1T = T−1TS(TS)−1T = T−1IWT = T−1T = IV .
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