
Math 2135: Linear Algebra

Assignment 4

Solutions

1. Let V and W be vector spaces, and let T : V →W be any function. The graph of
T is defined to be the subset graph(T ) ⊂ V ×W defined by

graph(T ) := {(v, Tv) s.t. v ∈ V }.

Prove that T is linear if and only if graph(T ) is a vector subspace of V ×W .

We first remark that (0, T0) ∈ graph(T ), and so graph(T ) is nonempty.

We will use the fact that the function graph(T ) → V given by sending (v, Tv) 7→ v is a
bijection. In other words:

(v, w) ∈ graph(T ) if and only if w = Tv.

Suppose that (v1, T v1) and (v2, T v2) are two points in graph(T ). Then their sum is (v1, T v1)+
(v2, T v2) = (v1 + v2, T v1 + Tv2). Taking v := v1 + v2 and w := Tv1 + Tv2 in the boxed
statement above, we see that this sum (v, w) is in graph(T ) if and only if w = Tv1 + Tv2 =
Tv = T (v1 + v2). Asking this to hold for all v1, v2, we thus find that graph(T ) is closed under
addition if and only if T is additive.

Now suppose that (v, Tv) is some point in graph(T ), and λ ∈ F is some scalar. Then
λ(v, Tv) = (λv, λTv). Again applying the boxed statement, we see that this point is in
graph(T ) if and only if λTv = Tλv. Asking this to hold for all v, λ, we thus find that
graph(T ) is closed under scalar multiplication if and only if T is homogeneous.

Together, we see that the two conditions (additivity and homogeneity) for T to be linear match
the two conditions (closure under addition and scalar multiplication) for the nonempty(!) set
graph(T ) to be a vector subspace of V ×W .

2. Let V1, V2,W be vector spaces.

(a) Find an isomorphism between L(W,V1 × V2) and L(W,V1)× L(W,V2).

Given any function T : W → V1 × V2, linear or not, define T1 : W → V1 to be the
function whose value on w ∈W is the first coordinate of T (w), and let T2 : W → V2 be
the function whose value is the second coordinate. In other words, T1, T2 are defined by
the formula

T (w) = (T1(w), T2(w)).

In the other direction, given any functions T1 : W → V1 and T2 : W → V2, linear or not,
the same formula defines a function T : W → V1 × V2.
We claim that if T , T1, and T2 are related in this way, then T is linear if and only if T1
and T2 are both linear. This claim follows simply from the way that vector addition and
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scalar multiplication are defined in V1 × V2. Indeed, given w,w′ ∈W and λ ∈ F, we see
that

T (λw + w′) = (T1(λw + w′), T2(λw + w′)), λT (w) + T (w′) = (λT1(w) + T1(w
′), λT2(w) + T2(w

′)),

but linearity of T is the statement that the above left-hand sides are equal for all w,w′,
whereas the statement that the above right-hand sides are equal for all w,w′ is precisely
linearity of both T1 and T2. Another way to see this is to note that T1, T2 are nothing but
the compositions of T with the projection maps π1 : V1×V2 → V1 and π2 : V1×V2 defined
by πi(v1, v2) = vi, and that these projection maps are linear, and that the composition
of linear maps is linear.

Thus we see that the boxed formula above, read in its two directions, defines a bijective
correspondence between L(W,V1 × V2) and L(W,V1) × L(W,V2). It remains to check
that this correspondence is linear. In other words, given T = (T1, T2) and T ′ = (T ′1, T

′
2)

and λ ∈ F, we must check that, for every w ∈W ,

(λT + T ′)(w) = ((λT1 + T ′1)(w), (λT2 + T ′2)(w)).

This follows from unpacking — for example, the left-hand side is λTw + T ′w — and
using the definition of the vector space structure on V1 × V2.

(b) Find an isomorphism between L(V1 × V2,W ) and L(V1,W )× L(V2,W ).

Note that (v1, v2) = (v1, 0) + (0, v2) as vectors in V1 × V2, for any vectors v1 ∈ V1 and
v2 ∈ V2. Now suppose that T : V1 × V2 →W is any linear map. Then

T (v1, v2) = T (v1, 0) + T (0, v2).

Define functions T1 : V1 → W and T2 : V2 → W by T1(v1) = T (v1, 0) and T2(v2) =
T (0, v2). Then the displayed equation equation is equivalent to

T (v1, v2) = T1(v1) + T2(v2).

If T is linear, then so are T1, T2, since these are nothing but the compositions of T with
the inclusions ι1 : V1 → V1 × V2 and ι2 : V2 → V1 × V2 defined by ι1(v1) = (v1, 0) and
ι2(v2) = (0, v2). On the other hand, suppose that T1 : V1 → W and T2 : V2 → W are
any linear maps, and define a function T : V1 × V2 → W by the boxed equation. Then
T will be linear:

T (λ(v1, v2) + (v′1, v
′
2)) = T (λv1 + v′1, λv2 + v′2) = T1(λv1 + v′1) + T2(λv2 + v′2)

= λT1v1 + T1v
′
1 + λT2v2 + T2v

′
2 = λT (v1, v2) + T (v′1, v

′
2)

Thus we see that the boxed equation defines a bijection between L(V1 × V2,W ) and
L(V1,W )×L(V2,W ). It is straightforward to show that this bijection is linear. Indeed,
one must show that if T, T1, T2 are as in the boxed equation, and if T ′, T ′1, T

′
2 are, then

for any λ,
(λT + T ′)(v1, v2) = (λT1 + T ′1)(v1) + (λT2 + T ′2)(v2)

which can be checked by expanding both sides.
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3. Let V be a vector space over F. Prove that a nonempty subset X ⊂ V is an affine
subspace (for some vector subspace U ⊂ V ) if and only if, for any v, w ∈ X and for
any λ ∈ F, λv + (1− λ)w ∈ X.

Note that the statement λv + (1− λ)w ∈ X can be rewritten as

w + λ(v − w) ∈ X.

If X is an affine subset for U , then for any v, w ∈ X and for any λ ∈ F, we have v − w ∈ U
and so λ(v −w) ∈ U and so w + λ(v −w) ∈ X. This proves the “only if” direction. In other
words, we have shown that if X is an affine subspace, then λv+(1−λ)w ∈ X for all v, w ∈ X.

For the “if” direction (i.e. if λv+(1−λ)w ∈ X for all v, w ∈ X, then X is an affine subspace),
we use that X is nonempty to fix a basepoint x ∈ X. Set U := X − x to be the set of vectors
of the form v − x where v ∈ X. Then X = x+ U , and it suffices to show that U is a vector
subspace. Note that 0 = x− x ∈ U .

To this end, we first argue that U is closed under scalar multiplication. Let u = v − x ∈ U .
We want to show that λu = λ(v − x) = λv − λx is also in U . This is equivalent to showing
that λv − λx+ x ∈ X, which follows (by setting w = x) from the assumption about X.

The only thing remaining to prove is that U is closed under vector addition. In other words,
we assume that we have u1, u2 ∈ U and we want to show that u1 + u2 ∈ U . But U is closed
under scalar multiplication, so u1 + u2 ∈ U if and only if 1

2(u1 + u2) ∈ U . It is this latter
statement that we will prove. By definition of U , we know that u1 +x and u2 +x are both in
X, and our goal is to prove that 1

2(u1 + u2) + x ∈ X. But taking v = u1 + x and w = u2 + x
and λ = 1

2 in the assumed property of X gives exactly this goal.

4. Let U1, U2 ⊂ V be vector subspaces. Suppose that X1 ⊂ V is an affine subspace
for U1 and that X2 ⊂ V is an affine subspace for U2. Prove that X1 ∩X2 is either
empty or an affine subspace for U1 ∩ U2.

In other words, we wish to show the following two facts:

(a) If x ∈ X1 ∩X2 and u ∈ U1 ∩ U2, then x+ u ∈ X1 ∩X2.

(b) If x, y ∈ X1 ∩X2, then x− y ∈ U1 ∩ U2.

But if x ∈ X1 ∩X2 and u ∈ U1 ∩U2, then certainly x ∈ X1 and u ∈ U1, and since X1 is affine
for U1, then certainly x + u ∈ X1. By the same token, certainly x ∈ X2 and u ∈ U2 and so
x+ u ∈ U2. But if x+ u is in both U1 and U2, then it is in U1 ∩ U2. This establishes fact 1.

Fact 2 is similar. If x, y ∈ X1∩X2, then certainly they are both in X1, and so their difference
x− y is in U1. But also certainly they are both in X2, and so their difference is in U2. But if
x− y is in both U1 and U2, then it is in U1 ∩ U2.

5. Let U ⊂ V be a vector subspace, let ι : U → V denote the “identity” map ι(u) = u,
and let π : V → V/U the quotient map. Let W be another vector space, and
consider the maps

◦ι : L(V,W )→ L(U,W ), T 7→ T ◦ ι,
◦π : L(V/U,W )→ L(V,W ), S 7→ S ◦ π.

Finally, let X ⊂ L(V,W ) denote the subset

X := {T ∈ L(V,W ) s.t. ker(T ) ⊇ U}.
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(a) Show that ◦ι and ◦π are linear, and that X is a vector subspace.

For the linearity, we will prove the following more general statement. Let S : U → V
denote any linear map. Then ◦S : L(V,W )→ L(U,W ) is linear. This statement, applied
to S = ι, gives the first linearity, and applied to S = π (with V replaced by V/U and U
replaced by V ) gives the second linearity.

To this end, we first show that ◦S is additive. Let T1, T2 ∈ L(V,W ). Then T1 +T2 is the
function which sends v 7→ (T1 + T2)(v) := T1v+ T2v. Its composition with S is thus the
function which sends u 7→ T1Su + T2Su. But this is precisely the function T1S + T2S.
This confirms that ◦S is additive. Homogeneity is confirmed similarly: let T ∈ L(V,W )
and λ ∈ F. Then λT is the function v 7→ λTv, and so (λT )◦S is the function u 7→ λTSu,
which is precisely the function λ(T ◦ S).

We now show that X is a vector space. To do so we unpack the condition “ker(T ) ⊇ U”:
it is equivalent to saying

Tu = 0 ∀u ∈ U.

Now, X is nonempty becuase the zero map T = 0 satisfies this condition. Suppose that
T1, T2 ∈ X. In other words, T1u = T2u = 0 for all u ∈ U . But then (T1 + T2)u = T1u+
T2u = 0 + 0 = 0, so T1 +T2 ∈ X. And if T ∈ X and λ ∈ F, then (λT )u = λTu = λ0 = 0
for all u ∈ U , so λT ∈ X.

(b) Show that ◦π is injective.

A linear map is injective if and only if its kernel is zero. So the question is equivalent
to showing that ker(◦π) = {0}. Unpacked, this is equivalent to showing that if S :
V/U → W satisfies S ◦ π = 0 : V → W , then S = 0. Well, π is the function that sends
v 7→ v + U , and so S ◦ π is the function which sends v ∈ V to S(v + U). So saying that
this is identically the zero function is saying that S(v + U) = 0 for every v + U ∈ V/U .
But every element of V/U is of the form v + U , and so S vanishes identically, i.e. it is
the zero function.

(c) Show that im(◦π) = X. Conclude that L(V/U,W ) ∼= X ⊂ L(V,W ).

We wish to show that T ∈ X ⊂ L(V,W ) if and only if there exists an S ∈ L(V/U,W )
such that S ◦ π = T . Unpacked, we wish to show that the following conditions on
T : V →W are equivalent:

i. Tu = 0 for all u ∈ U .

ii. There exists S : V/U →W such that Tv = S(v + U) for all v ∈ V .

Well, if ii. holds, then Tu = S(u+ U) = S(0 + U) = T0 = 0, so i. holds.

On the other hand, suppose that i. holds. Then recall that there is a linear map T̄ :
V/U → W defined by the formula T̄ (v + U) = Tv. Indeed, for this formula to define a
function, we need to know that if v + U = v′ + U , then Tv = Tv′ (so that the formula
really does return a well-defined output), but this is equivalent to the statement that
T (v − v′) = 0, which follows from the fact that v − v′ ∈ U and that T vanishes on U .
Now take S := T̄ ; then ii. holds.

The conclusion L(V/U,W ) ∼= X ⊂ L(V,W ) follows from the fact that ◦π is injective by
(b), and so it provides an isomorphism between its domain L(V/U,W ) and its image X.

(d) Show that ker(◦ι) = X.

By definition, ker(◦ι) ⊂ L(V,W ) is the set of T : V → W such that T ◦ ι = 0, or
equivalently such that 0 = Tιu = Tu for all u ∈ U . In other words, u ∈ kerT if u ∈ U ,
or in other words U ⊆ kerT . So this is simply the definition of X.
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(e) Assuming that V is finite-dimensional, show that ◦ι is surjective. (In fact, ◦ι
is surjective even if V is infinite-dimensional, but proving this requires some
set-theoretic results that go beyond the class.) Conclude that L(U,W ) ∼=
L(V,W )/X.

We must show that if S : U →W is any linear map, then S = T ◦ ι for some linear map
T : V → W . In other words, we are given the values of T on U and must extend it to
all of V . Using finite-dimensionality, let’s assume that dimV = n and dimU = m ≤ n.
Pick a basis v1, . . . , vm for U , and extend it to a basis v1, . . . , vm, vm+1, . . . , vn for V .
Now define

Tvi :=

{
Svi, i ≤ m,
0, i > m.

Remember that for any basis of V , any linear map V → W is uniquely determined
by its values on that basis. Thus there is a unique linear map T : V → W which
takes these values. It is the following: for any v ∈ V , write v =

∑n
i=1 αivi, and then

Tv =
∑n

i=1 αiTvi.

We claim that T ◦ ι = S, or in other words that Tu = Su if u ∈ U . Well, suppose that
u ∈ U , and write u =

∑n
i=1 αivi. Since v1, . . . , vn is a basis for V , there is a unique

such expression for v. Because v1, . . . , vm is a basis for U , we can write u as a linear
combination of just the first m basis vectors, i.e. we don’t need the last n−m. Since the
sum u =

∑n
i=1 αivi uniquely determines the αi, we conclude that αm+1 = · · · = αn = 0.

Thus Tv =
∑n

i=1 αiTvi =
∑m

i=1 αiTvi +
∑n

i=m+1 αiTvi =
∑m

i=1 αiTvi +
∑n

i=m+1 0Tvi =∑m
i=1 αiTvi + 0 = Su.

This establishes the surjectivity of ◦ι : L(V,W ) → L(U,W ). The conclusion follows
because, by (d), ker(◦ι) = X.

To summarize these results: L(−,W ) takes subs to quotients and quotients to
subs.

6. Let V1, V2,W be vector spaces. A function T : V1 × V2 → W is called bilinear if
for any v1 ∈ V1, the function T (v1,−) : V2 → W defined by v2 7→ f(v1, v2) is linear,
and also for any v2 ∈ V2 the function T (−, v2) : V1 → W defined by v1 7→ T (v1, v2) is
linear. Let BL(V1, V2;W ) denote the set of bilinear functions V1 × V2 →W .

(a) When V1 = V2 = W = R, show that the addition function A(v1, v2) := v1 + v2 is
linear but not bilinear, whereas the multiplication function M(v1, v2) := v1v2
is bilinear but not linear.

The statement that A is linear unpacks to:

additivity A((v1, v2)+(v′1, v
′
2)) = A(v1, v2)+A(v′1, v

′
2). But the left-hand side is A(v1+

v′1, v2 + v′2) = v1 + v′1 + v2 + v′2 and the right-hand side is v1 + v2 + v′1 + v′2, which
agree by commutativity of addition.

homogeneity A(λ(v1, v2)) = λA(v1, v2). But the left-hand side if A(λv1, λv2) = λv1 +
λv2, and the right-hand side is λ(v1 + v2), which agree by the distributivity law.

A is not bilinear. If it were, then for any choice of v1, the function A(v1,−) would be
linear. So let’s choose v1 = 2 to test this. Then we are asking whether A(2,−) : v 7→ 2+v
is a linear map. It isn’t, for example it is inhomogeneous (A(2, λv) = 2 +λv 6= λ(2 +v)).

The statement that M is bilinear unpacks to two statements. First, we are asserting that
for fixed v1, the function M(v1,−) is linear, and second we are asserting that for fixed
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v2, the function M(−, v2) is linear. Note that V1 = V2 = R, and so we we will change
letters: we are asserting that for v1 = λ ∈ R fixed, the function M(λ,−) : v 7→ λv is
linear, and we are asserting that for v2 = λ ∈ R, the function M(−, λ) : v 7→ vλ is linear.
These are the same function, and it is linear by the distributivity and associativity of
multiplication.

(b) Show that BL(V1, V2;W ) is a vector subspace of the set W V1×V2 of all functions.

To see that BL(V1, V2;W ) is nonempty, note that the zero map 0(−,−) is bilinear.
Indeed, if you fix v1, then 0(v1,−) is the zero map, which is linear, and if you fix v2,
then 0(−, v2) is the zero map, which is linear.

To see that BL(V1, V2;W ) is closed under addition, suppose that T, T ′ are both bilinear.
Then for any (v1, v2) ∈ V1×V2, we have (T +T ′)(v1, v2) = T (v1, v2) +T ′(v1, v2). Now, if
we fix v1, we are looking at the function (T+T ′)(v1,−) = T (v1,−)+T ′(v1,−) : V2 →W ,
which is a sum of two linear functions and hence linear. Similarly, if we fix v2, then
(T + T ′)(−, v2) = T (−, v2) + T ′(−, v2) : V1 → W is a sum of two linear functions and
hence linear. So T + T ′ is bilinear.

To see that BL(V1, V2;W ) is closed under scalar multiplication, suppose that T is bilinear
and λ ∈ F. Then λT is the function defined by (λT )(v1, v2) = λT (v1, v2). If you fix v1,
you get the function λT (v1,−) : V2 →W , which is λ times the linear function T (v1,−) :
V2 → W , and hence linear. Similarly, if you fix v2, you get λT (−, v2) : V1 → W , which
is a multiple of a linear function and hence linear. So λT is bilinear.

(c) Show that BL(V1, V2;W ) is isomorphic to L(V1,L(V2,W )) and also to L(V2,L(V1,W )).

There is a manifest isomorphism BL(V1, V2;W ) ∼= BL(V2, V1;W ) given by sending T :
V1 × V2 → W to the function T ′ : V2 × V1 → W defined by T ′(v2, v1) = T (v1, v2). So it
suffices to establish an isomorphism BL(V1, V2;W ) ∼= L(V1,L(V2,W )).

Well, suppose that T ∈ BL(V1, V2;W ). Then for any v1, the function T (v1,−) : V2 →W
is linear. In other words, T ] : v1 7→ T (v1,−) is a function V1 → L(V2,W ).

We first claim that T ] is linear, i.e. it is an element of L(V1,L(V2,W )). Unpacked, we
want to show the following: given v1, v

′
1 ∈ V1 and λ ∈ F, we want to show that we have

an equality

T ](λv1 + v′1)
?
= λT ](v1) + T ](v′1)

of elements of L(V2,W ). In other words, this should be an equality of functions, and
two functions are equal if they have the same values. So we want to show that for every
v2 ∈ V2,

T ](λv1 + v′1)(v2)
?
= λT ](v1)(v2) + T ](v′1)(v2)

is an equality in W . Except the LHS is T (λv1 + v′1, v2) and the right-hand side is
λT (v1, v2) + T (v′1, v2), and these are equal because the function T (−, v2) is linear.

So we have produced an operation ] : BL(V1, V2;W ) → L(V1,L(V2,W )) sending T 7→
T ]. We next need to show that ] is linear. In other words, we need to show that if
T, T ′ ∈ BL(V1, V2;W ) and λ ∈ F, then

(λT + T ′)]
?
= λT ] + (T ′)]

is an equality in L(V1,L(V2,W )). But the left-hand side is the function (λT+T ′)(v1,−) :
V2 → W and the right-hand side is the function λT (v1,−) + T ′(v1,−) : V2 → W . In
other words, we need to show that for any v2 ∈ V2, we have

(λT + T ′)(v1, v2)
?
= λT (v1, v2) + T ′(v1, v2)
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but this is just how addition and scalar multiplication of functions is defined.

Summarizing so far, we have produced a linear transformation ] : BL(V1, V2;W ) →
L(V1,L(V2,W )). We now must show that it is an isomorphism. We will do this by
exhibiting its inverse function.

Suppose that S ∈ L(V1,L(V2,W )). In other words, for any v1, S(v1) ∈ L(V2,W ) is a
linear map. Define S[ : V1 × V2 → W by S[(v1, v2) = S(v1)(v2). We claim that S[ is
bilinear. First, fixing v1, we definitely have S[(v1,−) = S(v1) : V2 →W is a linear map,
so that does half of the bilinearity. Next, fix v2; then we claim that S[(−, v2) : V1 →W
is linear. Unpacked, we are claiming that, for any v1, v

′
1 ∈ V1 and any λ ∈ F, then

S[(λv1 + v′1, v2)
?
= λS[(v1, v2) + S[(v′1, v2)

is an equality in W . In other words, we are claiming that

S[(λv1 + v′1,−)
?
= λS[(v1,−) + S[(v′1,−)

is an equality of functions V2 → W . But the left-hand side is precisely S(λv1 + v′1) ∈
L(V2,W ) and the right-hand side is precisely λS(v1) + S(v′1) ∈ L(V2,W ), and these are
equal by linearity of S.

Summarizing so far, we have a linear transformation BL(V1, V2;W ) → L(V1,L(V2,W ))
sending T 7→ T ] defined by T ](v1)(v2) = T (v1, v2), and we have a function L(V1,L(V2,W ))→
BL(V1, V2;W ) sending S 7→ S[ defined by S[(v1, v2) = S(v1)(v2). Then we obviously
have (T ])[ = T and (S[)] = S, and so these two transformations are inverses. Since one
was linear, both are, and they give the desired isomorphism.

(d) Suppose that V1 and V2 are finite dimensional. Assume that there exists a vec-
tor space V such that, for any vector space W , the vector spaces BL(V1, V2;W )
and L(V,W ) are isomorphic. What is the dimension of V ?

Remark: In fact, such a V does exist. It is called the tensor product of V1
with V2, and denoted V1 ⊗ V2.
If there is supposed to be an isomorphism BL(V1, V2;W ) ∼= L(V,W ) for any W , then
in particular there should be an isomorphism for W = F. But dimL(V,F) = dimV ,
whereas, using (c), we learn that

dimBL(V1, V2;F) = dimL(V1,L(V2,F)) = dimV1 × dimL(V2,F) = dimV1 × dimV2.

So we must have dim(V1 ⊗ V2) = dimV1 × dimV2 .
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