Math 2135: Linear Algebra

Assignment 4

Solutions

1. Let V and W be vector spaces, and let $T: V \to W$ be any function. The graph of T is defined to be the subset $graph(T) \subset V \times W$ defined by

 $graph(T) := \{ (v, Tv) \text{ s.t. } v \in V \}.$

Prove that T is linear if and only if graph(T) is a vector subspace of $V \times W$.

We first remark that $(0, T0) \in \operatorname{graph}(T)$, and so $\operatorname{graph}(T)$ is nonempty.

We will use the fact that the function $graph(T) \to V$ given by sending $(v, Tv) \mapsto v$ is a bijection. In other words:

 $(v, w) \in \operatorname{graph}(T)$ if and only if w = Tv.

Suppose that (v_1, Tv_1) and (v_2, Tv_2) are two points in graph(T). Then their sum is $(v_1, Tv_1) + (v_2, Tv_2) = (v_1 + v_2, Tv_1 + Tv_2)$. Taking $v := v_1 + v_2$ and $w := Tv_1 + Tv_2$ in the boxed statement above, we see that this sum (v, w) is in graph(T) if and only if $w = Tv_1 + Tv_2 = Tv = T(v_1 + v_2)$. Asking this to hold for all v_1, v_2 , we thus find that graph(T) is closed under addition if and only if T is additive.

Now suppose that (v, Tv) is some point in graph(T), and $\lambda \in \mathbb{F}$ is some scalar. Then $\lambda(v, Tv) = (\lambda v, \lambda Tv)$. Again applying the boxed statement, we see that this point is in graph(T) if and only if $\lambda Tv = T\lambda v$. Asking this to hold for all v, λ , we thus find that graph(T) is closed under scalar multiplication if and only if T is homogeneous.

Together, we see that the two conditions (additivity and homogeneity) for T to be linear match the two conditions (closure under addition and scalar multiplication) for the nonempty(!) set graph(T) to be a vector subspace of $V \times W$.

- 2. Let V_1, V_2, W be vector spaces.
 - (a) Find an isomorphism between $\mathcal{L}(W, V_1 \times V_2)$ and $\mathcal{L}(W, V_1) \times \mathcal{L}(W, V_2)$.

Given any function $T: W \to V_1 \times V_2$, linear or not, define $T_1: W \to V_1$ to be the function whose value on $w \in W$ is the first coordinate of T(w), and let $T_2: W \to V_2$ be the function whose value is the second coordinate. In other words, T_1, T_2 are defined by the formula

$$T(w) = (T_1(w), T_2(w)).$$

In the other direction, given any functions $T_1: W \to V_1$ and $T_2: W \to V_2$, linear or not, the same formula defines a function $T: W \to V_1 \times V_2$.

We claim that if T, T_1 , and T_2 are related in this way, then T is linear if and only if T_1 and T_2 are both linear. This claim follows simply from the way that vector addition and scalar multiplication are defined in $V_1 \times V_2$. Indeed, given $w, w' \in W$ and $\lambda \in \mathbb{F}$, we see that

$$T(\lambda w + w') = (T_1(\lambda w + w'), T_2(\lambda w + w')), \qquad \lambda T(w) + T(w') = (\lambda T_1(w) + T_1(w'), \lambda T_2(w) + T_2(w'))$$

but linearity of T is the statement that the above left-hand sides are equal for all w, w', whereas the statement that the above right-hand sides are equal for all w, w' is precisely linearity of both T_1 and T_2 . Another way to see this is to note that T_1, T_2 are nothing but the compositions of T with the projection maps $\pi_1 : V_1 \times V_2 \to V_1$ and $\pi_2 : V_1 \times V_2$ defined by $\pi_i(v_1, v_2) = v_i$, and that these projection maps are linear, and that the composition of linear maps is linear.

Thus we see that the boxed formula above, read in its two directions, defines a bijective correspondence between $\mathcal{L}(W, V_1 \times V_2)$ and $\mathcal{L}(W, V_1) \times \mathcal{L}(W, V_2)$. It remains to check that this correspondence is linear. In other words, given $T = (T_1, T_2)$ and $T' = (T'_1, T'_2)$ and $\lambda \in \mathbb{F}$, we must check that, for every $w \in W$,

$$(\lambda T + T')(w) = ((\lambda T_1 + T'_1)(w), (\lambda T_2 + T'_2)(w)).$$

This follows from unpacking — for example, the left-hand side is $\lambda Tw + T'w$ — and using the definition of the vector space structure on $V_1 \times V_2$.

(b) Find an isomorphism between $\mathcal{L}(V_1 \times V_2, W)$ and $\mathcal{L}(V_1, W) \times \mathcal{L}(V_2, W)$. Note that $(v_1, v_2) = (v_1, 0) + (0, v_2)$ as vectors in $V_1 \times V_2$, for any vectors $v_1 \in V_1$ and $v_2 \in V_2$. Now suppose that $T: V_1 \times V_2 \to W$ is any linear map. Then

$$T(v_1, v_2) = T(v_1, 0) + T(0, v_2).$$

Define functions $T_1: V_1 \to W$ and $T_2: V_2 \to W$ by $T_1(v_1) = T(v_1, 0)$ and $T_2(v_2) = T(0, v_2)$. Then the displayed equation equation is equivalent to

$$T(v_1, v_2) = T_1(v_1) + T_2(v_2).$$

If T is linear, then so are T_1, T_2 , since these are nothing but the compositions of T with the inclusions $\iota_1 : V_1 \to V_1 \times V_2$ and $\iota_2 : V_2 \to V_1 \times V_2$ defined by $\iota_1(v_1) = (v_1, 0)$ and $\iota_2(v_2) = (0, v_2)$. On the other hand, suppose that $T_1 : V_1 \to W$ and $T_2 : V_2 \to W$ are any linear maps, and define a function $T : V_1 \times V_2 \to W$ by the boxed equation. Then T will be linear:

$$T(\lambda(v_1, v_2) + (v'_1, v'_2)) = T(\lambda v_1 + v'_1, \lambda v_2 + v'_2) = T_1(\lambda v_1 + v'_1) + T_2(\lambda v_2 + v'_2)$$

= $\lambda T_1 v_1 + T_1 v'_1 + \lambda T_2 v_2 + T_2 v'_2 = \lambda T(v_1, v_2) + T(v'_1, v'_2)$

Thus we see that the boxed equation defines a bijection between $\mathcal{L}(V_1 \times V_2, W)$ and $\mathcal{L}(V_1, W) \times \mathcal{L}(V_2, W)$. It is straightforward to show that this bijection is linear. Indeed, one must show that if T, T_1, T_2 are as in the boxed equation, and if T', T'_1, T'_2 are, then for any λ ,

$$(\lambda T + T')(v_1, v_2) = (\lambda T_1 + T'_1)(v_1) + (\lambda T_2 + T'_2)(v_2)$$

which can be checked by expanding both sides.

3. Let V be a vector space over \mathbb{F} . Prove that a nonempty subset $X \subset V$ is an affine subspace (for some vector subspace $U \subset V$) if and only if, for any $v, w \in X$ and for any $\lambda \in \mathbb{F}$, $\lambda v + (1 - \lambda)w \in X$.

Note that the statement $\lambda v + (1 - \lambda)w \in X$ can be rewritten as

$$w + \lambda(v - w) \in X.$$

If X is an affine subset for U, then for any $v, w \in X$ and for any $\lambda \in \mathbb{F}$, we have $v - w \in U$ and so $\lambda(v - w) \in U$ and so $w + \lambda(v - w) \in X$. This proves the "only if" direction. In other words, we have shown that if X is an affine subspace, then $\lambda v + (1 - \lambda)w \in X$ for all $v, w \in X$.

For the "if" direction (i.e. if $\lambda v + (1 - \lambda)w \in X$ for all $v, w \in X$, then X is an affine subspace), we use that X is nonempty to fix a basepoint $x \in X$. Set U := X - x to be the set of vectors of the form v - x where $v \in X$. Then X = x + U, and it suffices to show that U is a vector subspace. Note that $0 = x - x \in U$.

To this end, we first argue that U is closed under scalar multiplication. Let $u = v - x \in U$. We want to show that $\lambda u = \lambda(v - x) = \lambda v - \lambda x$ is also in U. This is equivalent to showing that $\lambda v - \lambda x + x \in X$, which follows (by setting w = x) from the assumption about X.

The only thing remaining to prove is that U is closed under vector addition. In other words, we assume that we have $u_1, u_2 \in U$ and we want to show that $u_1 + u_2 \in U$. But U is closed under scalar multiplication, so $u_1 + u_2 \in U$ if and only if $\frac{1}{2}(u_1 + u_2) \in U$. It is this latter statement that we will prove. By definition of U, we know that $u_1 + x$ and $u_2 + x$ are both in X, and our goal is to prove that $\frac{1}{2}(u_1 + u_2) + x \in X$. But taking $v = u_1 + x$ and $w = u_2 + x$ and $\lambda = \frac{1}{2}$ in the assumed property of X gives exactly this goal.

4. Let $U_1, U_2 \subset V$ be vector subspaces. Suppose that $X_1 \subset V$ is an affine subspace for U_1 and that $X_2 \subset V$ is an affine subspace for U_2 . Prove that $X_1 \cap X_2$ is either empty or an affine subspace for $U_1 \cap U_2$.

In other words, we wish to show the following two facts:

- (a) If $x \in X_1 \cap X_2$ and $u \in U_1 \cap U_2$, then $x + u \in X_1 \cap X_2$.
- (b) If $x, y \in X_1 \cap X_2$, then $x y \in U_1 \cap U_2$.

But if $x \in X_1 \cap X_2$ and $u \in U_1 \cap U_2$, then certainly $x \in X_1$ and $u \in U_1$, and since X_1 is affine for U_1 , then certainly $x + u \in X_1$. By the same token, certainly $x \in X_2$ and $u \in U_2$ and so $x + u \in U_2$. But if x + u is in both U_1 and U_2 , then it is in $U_1 \cap U_2$. This establishes fact 1. Fact 2 is similar. If $x, y \in X_1 \cap X_2$, then certainly they are both in X_1 , and so their difference x - y is in U_1 . But also certainly they are both in X_2 , and so their difference is in U_2 . But if x - y is in both U_1 and U_2 , then it is in $U_1 \cap U_2$.

5. Let $U \subset V$ be a vector subspace, let $\iota : U \to V$ denote the "identity" map $\iota(u) = u$, and let $\pi : V \to V/U$ the quotient map. Let W be another vector space, and consider the maps

$$\circ\iota: \mathcal{L}(V, W) \to \mathcal{L}(U, W), \ T \mapsto T \circ \iota,$$

$$\circ\pi: \mathcal{L}(V/U, W) \to \mathcal{L}(V, W), \ S \mapsto S \circ \pi$$

Finally, let $X \subset \mathcal{L}(V, W)$ denote the subset

$$X := \{ T \in \mathcal{L}(V, W) \text{ s.t. } \ker(T) \supseteq U \}.$$

(a) Show that $\circ\iota$ and $\circ\pi$ are linear, and that X is a vector subspace.

For the linearity, we will prove the following more general statement. Let $S: U \to V$ denote any linear map. Then $\circ S: \mathcal{L}(V, W) \to \mathcal{L}(U, W)$ is linear. This statement, applied to $S = \iota$, gives the first linearity, and applied to $S = \pi$ (with V replaced by V/U and U replaced by V) gives the second linearity.

To this end, we first show that $\circ S$ is additive. Let $T_1, T_2 \in \mathcal{L}(V, W)$. Then $T_1 + T_2$ is the function which sends $v \mapsto (T_1 + T_2)(v) := T_1v + T_2v$. Its composition with S is thus the function which sends $u \mapsto T_1Su + T_2Su$. But this is precisely the function $T_1S + T_2S$. This confirms that $\circ S$ is additive. Homogeneity is confirmed similarly: let $T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$. Then λT is the function $v \mapsto \lambda Tv$, and so $(\lambda T) \circ S$ is the function $u \mapsto \lambda TSu$, which is precisely the function $\lambda(T \circ S)$.

We now show that X is a vector space. To do so we unpack the condition "ker $(T) \supseteq U$ ": it is equivalent to saying

$$Tu = 0 \quad \forall u \in U.$$

Now, X is nonempty because the zero map T = 0 satisfies this condition. Suppose that $T_1, T_2 \in X$. In other words, $T_1u = T_2u = 0$ for all $u \in U$. But then $(T_1 + T_2)u = T_1u + T_2u = 0 + 0 = 0$, so $T_1 + T_2 \in X$. And if $T \in X$ and $\lambda \in \mathbb{F}$, then $(\lambda T)u = \lambda Tu = \lambda 0 = 0$ for all $u \in U$, so $\lambda T \in X$.

(b) Show that $\circ \pi$ is injective.

A linear map is injective if and only if its kernel is zero. So the question is equivalent to showing that $\ker(\circ\pi) = \{0\}$. Unpacked, this is equivalent to showing that if $S : V/U \to W$ satisfies $S \circ \pi = 0 : V \to W$, then S = 0. Well, π is the function that sends $v \mapsto v + U$, and so $S \circ \pi$ is the function which sends $v \in V$ to S(v + U). So saying that this is identically the zero function is saying that S(v + U) = 0 for every $v + U \in V/U$. But every element of V/U is of the form v + U, and so S vanishes identically, i.e. it is the zero function.

(c) Show that $\operatorname{im}(\circ \pi) = X$. Conclude that $\mathcal{L}(V/U, W) \cong X \subset \mathcal{L}(V, W)$.

We wish to show that $T \in X \subset \mathcal{L}(V, W)$ if and only if there exists an $S \in \mathcal{L}(V/U, W)$ such that $S \circ \pi = T$. Unpacked, we wish to show that the following conditions on $T: V \to W$ are equivalent:

- i. Tu = 0 for all $u \in U$.
- ii. There exists $S: V/U \to W$ such that Tv = S(v+U) for all $v \in V$.

Well, if ii. holds, then Tu = S(u+U) = S(0+U) = T0 = 0, so i. holds.

On the other hand, suppose that i. holds. Then recall that there is a linear map \overline{T} : $V/U \to W$ defined by the formula $\overline{T}(v+U) = Tv$. Indeed, for this formula to define a function, we need to know that if v + U = v' + U, then Tv = Tv' (so that the formula really does return a well-defined output), but this is equivalent to the statement that T(v - v') = 0, which follows from the fact that $v - v' \in U$ and that T vanishes on U. Now take $S := \overline{T}$; then ii. holds.

The conclusion $\mathcal{L}(V/U, W) \cong X \subset \mathcal{L}(V, W)$ follows from the fact that $\circ \pi$ is injective by (b), and so it provides an isomorphism between its domain $\mathcal{L}(V/U, W)$ and its image X.

(d) Show that $\ker(\circ\iota) = X$.

By definition, $\ker(\circ \iota) \subset \mathcal{L}(V, W)$ is the set of $T : V \to W$ such that $T \circ \iota = 0$, or equivalently such that $0 = T\iota u = Tu$ for all $u \in U$. In other words, $u \in \ker T$ if $u \in U$, or in other words $U \subseteq \ker T$. So this is simply the definition of X.

(e) Assuming that V is finite-dimensional, show that $\circ \iota$ is surjective. (In fact, $\circ \iota$ is surjective even if V is infinite-dimensional, but proving this requires some set-theoretic results that go beyond the class.) Conclude that $\mathcal{L}(U,W) \cong \mathcal{L}(V,W)/X$.

We must show that if $S: U \to W$ is any linear map, then $S = T \circ \iota$ for some linear map $T: V \to W$. In other words, we are given the values of T on U and must extend it to all of V. Using finite-dimensionality, let's assume that dim V = n and dim $U = m \leq n$. Pick a basis v_1, \ldots, v_m for U, and extend it to a basis $v_1, \ldots, v_m, v_{m+1}, \ldots, v_n$ for V. Now define

$$Tv_i := \begin{cases} Sv_i, & i \le m, \\ 0, & i > m. \end{cases}$$

Remember that for any basis of V, any linear map $V \to W$ is uniquely determined by its values on that basis. Thus there is a unique linear map $T: V \to W$ which takes these values. It is the following: for any $v \in V$, write $v = \sum_{i=1}^{n} \alpha_i v_i$, and then $Tv = \sum_{i=1}^{n} \alpha_i Tv_i$.

We claim that $T \circ \iota = S$, or in other words that Tu = Su if $u \in U$. Well, suppose that $u \in U$, and write $u = \sum_{i=1}^{n} \alpha_i v_i$. Since v_1, \ldots, v_n is a basis for V, there is a unique such expression for v. Because v_1, \ldots, v_m is a basis for U, we can write u as a linear combination of just the first m basis vectors, i.e. we don't need the last n - m. Since the sum $u = \sum_{i=1}^{n} \alpha_i v_i$ uniquely determines the α_i , we conclude that $\alpha_{m+1} = \cdots = \alpha_n = 0$. Thus $Tv = \sum_{i=1}^{n} \alpha_i Tv_i = \sum_{i=1}^{m} \alpha_i Tv_i + \sum_{i=m+1}^{n} \alpha_i Tv_i = \sum_{i=1}^{m} \alpha_i Tv_i + \sum_{i=m+1}^{n} \alpha_i Tv_i = \sum_{i=1}^{m} \alpha_i Tv_i + \sum_{i=m+1}^{n} \alpha_i Tv_i = \sum_{i=1}^{m} \alpha_i Tv_i + 0$.

This establishes the surjectivity of $\circ \iota : \mathcal{L}(V, W) \to \mathcal{L}(U, W)$. The conclusion follows because, by (d), $\ker(\circ \iota) = X$.

To summarize these results: $\mathcal{L}(-,W)$ takes subs to quotients and quotients to subs.

- 6. Let V_1, V_2, W be vector spaces. A function $T : V_1 \times V_2 \to W$ is called *bilinear* if for any $v_1 \in V_1$, the function $T(v_1, -) : V_2 \to W$ defined by $v_2 \mapsto f(v_1, v_2)$ is linear, and also for any $v_2 \in V_2$ the function $T(-, v_2) : V_1 \to W$ defined by $v_1 \mapsto T(v_1, v_2)$ is linear. Let $\mathcal{BL}(V_1, V_2; W)$ denote the set of bilinear functions $V_1 \times V_2 \to W$.
 - (a) When $V_1 = V_2 = W = \mathbb{R}$, show that the addition function $A(v_1, v_2) := v_1 + v_2$ is linear but not bilinear, whereas the multiplication function $M(v_1, v_2) := v_1v_2$ is bilinear but not linear.

The statement that A is linear unpacks to:

- **additivity** $A((v_1, v_2) + (v'_1, v'_2)) = A(v_1, v_2) + A(v'_1, v'_2)$. But the left-hand side is $A(v_1 + v'_1, v_2 + v'_2) = v_1 + v'_1 + v_2 + v'_2$ and the right-hand side is $v_1 + v_2 + v'_1 + v'_2$, which agree by commutativity of addition.
- **homogeneity** $A(\lambda(v_1, v_2)) = \lambda A(v_1, v_2)$. But the left-hand side if $A(\lambda v_1, \lambda v_2) = \lambda v_1 + \lambda v_2$, and the right-hand side is $\lambda(v_1 + v_2)$, which agree by the distributivity law.

A is not bilinear. If it were, then for any choice of v_1 , the function $A(v_1, -)$ would be linear. So let's choose $v_1 = 2$ to test this. Then we are asking whether $A(2, -) : v \mapsto 2+v$ is a linear map. It isn't, for example it is inhomogeneous $(A(2, \lambda v) = 2 + \lambda v \neq \lambda(2+v))$. The statement that M is bilinear unpacks to two statements. First, we are asserting that for fixed v_1 , the function $M(v_1, -)$ is linear, and second we are asserting that for fixed v_2 , the function $M(-, v_2)$ is linear. Note that $V_1 = V_2 = \mathbb{R}$, and so we we will change letters: we are asserting that for $v_1 = \lambda \in \mathbb{R}$ fixed, the function $M(\lambda, -) : v \mapsto \lambda v$ is linear, and we are asserting that for $v_2 = \lambda \in \mathbb{R}$, the function $M(-, \lambda) : v \mapsto v\lambda$ is linear. These are the same function, and it is linear by the distributivity and associativity of multiplication.

(b) Show that $\mathcal{BL}(V_1, V_2; W)$ is a vector subspace of the set $W^{V_1 \times V_2}$ of all functions. To see that $\mathcal{BL}(V_1, V_2; W)$ is nonempty, note that the zero map 0(-, -) is bilinear. Indeed, if you fix v_1 , then $0(v_1, -)$ is the zero map, which is linear, and if you fix v_2 , then $0(-, v_2)$ is the zero map, which is linear.

To see that $\mathcal{BL}(V_1, V_2; W)$ is closed under addition, suppose that T, T' are both bilinear. Then for any $(v_1, v_2) \in V_1 \times V_2$, we have $(T+T')(v_1, v_2) = T(v_1, v_2) + T'(v_1, v_2)$. Now, if we fix v_1 , we are looking at the function $(T+T')(v_1, -) = T(v_1, -) + T'(v_1, -) : V_2 \to W$, which is a sum of two linear functions and hence linear. Similarly, if we fix v_2 , then $(T+T')(-, v_2) = T(-, v_2) + T'(-, v_2) : V_1 \to W$ is a sum of two linear functions and hence linear. So T + T' is bilinear.

To see that $\mathcal{BL}(V_1, V_2; W)$ is closed under scalar multiplication, suppose that T is bilinear and $\lambda \in \mathbb{F}$. Then λT is the function defined by $(\lambda T)(v_1, v_2) = \lambda T(v_1, v_2)$. If you fix v_1 , you get the function $\lambda T(v_1, -) : V_2 \to W$, which is λ times the linear function $T(v_1, -) :$ $V_2 \to W$, and hence linear. Similarly, if you fix v_2 , you get $\lambda T(-, v_2) : V_1 \to W$, which is a multiple of a linear function and hence linear. So λT is bilinear.

(c) Show that $\mathcal{BL}(V_1, V_2; W)$ is isomorphic to $\mathcal{L}(V_1, \mathcal{L}(V_2, W))$ and also to $\mathcal{L}(V_2, \mathcal{L}(V_1, W))$. There is a manifest isomorphism $\mathcal{BL}(V_1, V_2; W) \cong \mathcal{BL}(V_2, V_1; W)$ given by sending $T : V_1 \times V_2 \to W$ to the function $T' : V_2 \times V_1 \to W$ defined by $T'(v_2, v_1) = T(v_1, v_2)$. So it suffices to establish an isomorphism $\mathcal{BL}(V_1, V_2; W) \cong \mathcal{L}(V_1, \mathcal{L}(V_2, W))$.

Well, suppose that $T \in \mathcal{BL}(V_1, V_2; W)$. Then for any v_1 , the function $T(v_1, -): V_2 \to W$ is linear. In other words, $T^{\sharp}: v_1 \mapsto T(v_1, -)$ is a function $V_1 \to \mathcal{L}(V_2, W)$.

We first claim that T^{\sharp} is linear, i.e. it is an element of $\mathcal{L}(V_1, \mathcal{L}(V_2, W))$. Unpacked, we want to show the following: given $v_1, v'_1 \in V_1$ and $\lambda \in \mathbb{F}$, we want to show that we have an equality

$$T^{\sharp}(\lambda v_1 + v_1') \stackrel{?}{=} \lambda T^{\sharp}(v_1) + T^{\sharp}(v_1')$$

of elements of $\mathcal{L}(V_2, W)$. In other words, this should be an equality of functions, and two functions are equal if they have the same values. So we want to show that for every $v_2 \in V_2$,

$$T^{\sharp}(\lambda v_1 + v_1')(v_2) \stackrel{?}{=} \lambda T^{\sharp}(v_1)(v_2) + T^{\sharp}(v_1')(v_2)$$

is an equality in W. Except the LHS is $T(\lambda v_1 + v'_1, v_2)$ and the right-hand side is $\lambda T(v_1, v_2) + T(v'_1, v_2)$, and these are equal because the function $T(-, v_2)$ is linear.

So we have produced an operation $\sharp : \mathcal{BL}(V_1, V_2; W) \to \mathcal{L}(V_1, \mathcal{L}(V_2, W))$ sending $T \mapsto T^{\sharp}$. We next need to show that \sharp is linear. In other words, we need to show that if $T, T' \in \mathcal{BL}(V_1, V_2; W)$ and $\lambda \in \mathbb{F}$, then

$$(\lambda T + T')^{\sharp} \stackrel{?}{=} \lambda T^{\sharp} + (T')^{\sharp}$$

is an equality in $\mathcal{L}(V_1, \mathcal{L}(V_2, W))$. But the left-hand side is the function $(\lambda T + T')(v_1, -) : V_2 \to W$ and the right-hand side is the function $\lambda T(v_1, -) + T'(v_1, -) : V_2 \to W$. In other words, we need to show that for any $v_2 \in V_2$, we have

$$(\lambda T + T')(v_1, v_2) \stackrel{!}{=} \lambda T(v_1, v_2) + T'(v_1, v_2)$$

but this is just how addition and scalar multiplication of functions is defined.

Summarizing so far, we have produced a linear transformation $\sharp : \mathcal{BL}(V_1, V_2; W) \to \mathcal{L}(V_1, \mathcal{L}(V_2, W))$. We now must show that it is an isomorphism. We will do this by exhibiting its inverse function.

Suppose that $S \in \mathcal{L}(V_1, \mathcal{L}(V_2, W))$. In other words, for any $v_1, S(v_1) \in \mathcal{L}(V_2, W)$ is a linear map. Define $S^{\flat} : V_1 \times V_2 \to W$ by $S^{\flat}(v_1, v_2) = S(v_1)(v_2)$. We claim that S^{\flat} is bilinear. First, fixing v_1 , we definitely have $S^{\flat}(v_1, -) = S(v_1) : V_2 \to W$ is a linear map, so that does half of the bilinearity. Next, fix v_2 ; then we claim that $S^{\flat}(-, v_2) : V_1 \to W$ is linear. Unpacked, we are claiming that, for any $v_1, v'_1 \in V_1$ and any $\lambda \in \mathbb{F}$, then

$$S^{\flat}(\lambda v_1 + v'_1, v_2) \stackrel{?}{=} \lambda S^{\flat}(v_1, v_2) + S^{\flat}(v'_1, v_2)$$

is an equality in W. In other words, we are claiming that

$$S^{\flat}(\lambda v_1 + v'_1, -) \stackrel{?}{=} \lambda S^{\flat}(v_1, -) + S^{\flat}(v'_1, -)$$

is an equality of functions $V_2 \to W$. But the left-hand side is precisely $S(\lambda v_1 + v'_1) \in \mathcal{L}(V_2, W)$ and the right-hand side is precisely $\lambda S(v_1) + S(v'_1) \in \mathcal{L}(V_2, W)$, and these are equal by linearity of S.

Summarizing so far, we have a linear transformation $\mathcal{BL}(V_1, V_2; W) \to \mathcal{L}(V_1, \mathcal{L}(V_2, W))$ sending $T \mapsto T^{\sharp}$ defined by $T^{\sharp}(v_1)(v_2) = T(v_1, v_2)$, and we have a function $\mathcal{L}(V_1, \mathcal{L}(V_2, W)) \to \mathcal{BL}(V_1, V_2; W)$ sending $S \mapsto S^{\flat}$ defined by $S^{\flat}(v_1, v_2) = S(v_1)(v_2)$. Then we obviously have $(T^{\sharp})^{\flat} = T$ and $(S^{\flat})^{\sharp} = S$, and so these two transformations are inverses. Since one was linear, both are, and they give the desired isomorphism.

(d) Suppose that V_1 and V_2 are finite dimensional. Assume that there exists a vector space V such that, for any vector space W, the vector spaces $\mathcal{BL}(V_1, V_2; W)$ and $\mathcal{L}(V, W)$ are isomorphic. What is the dimension of V?

Remark: In fact, such a V does exist. It is called the *tensor product* of V_1 with V_2 , and denoted $V_1 \otimes V_2$.

If there is supposed to be an isomorphism $\mathcal{BL}(V_1, V_2; W) \cong \mathcal{L}(V, W)$ for any W, then in particular there should be an isomorphism for $W = \mathbb{F}$. But dim $\mathcal{L}(V, \mathbb{F}) = \dim V$, whereas, using (c), we learn that

 $\dim \mathcal{BL}(V_1, V_2; \mathbb{F}) = \dim \mathcal{L}(V_1, \mathcal{L}(V_2, \mathbb{F})) = \dim V_1 \times \dim \mathcal{L}(V_2, \mathbb{F}) = \dim V_1 \times \dim V_2.$

So we must have $\dim(V_1 \otimes V_2) = \dim V_1 \times \dim V_2$