
Math 2135: Linear Algebra

Assignment 5

Solutions

1. Let V be a vector space and T ∈ L(V ), and suppose that Tn = 0 for some positive
integer n. Prove that I − T is invertible and that its inverse is

(I − T )−1 = I + T + T 2 + · · ·+ Tn−1.

We multiply

(I − T )(I + T + T 2 + · · ·+ Tn−1)

= I − T + T − T 2 + T 2 − T 3 + · · ·+ Tn−2 − Tn−1 + Tn−1 − Tn

= I + 0 + 0 + · · ·+ 0− Tn = I

since Tn = 0. The same calculation shows that (I+T +T 2 + · · ·+Tn−1)(I−T ) = I (the two
factors commute). So they are each other’s inverses, and in particular both are invertible.

2. Let V be a vector space and T ∈ L(V ). Show that 9 is an eigenvalue of T 2 if and
only if at least one of 3 and −3 is an eigenvalue of T .

If 9 is an eigenvalue of T 2, then T 2− 9 is not injective. But T 2− 9 = (T − 3)(T + 3), and the
composition of injective operators is again injective. So at least one of T − 3 and T + 3 must
not be injective, so at least one of 3 and −3 must be an eigenvalue of T .

If 3 is an eigenvalue of T , let v 6= 0 be a corresponding eigenvector. Then T 2v = TTv =
T3v = 3Tv = 32v = 9v, and so 9 is an eigenvalue of T 2. Similarly, if −3 is an eigenvalue of
T , let v 6= 0 be a corresponding eigenvector, and compute T 2v = (−3)2v = 9v.

3. Let V be a vector space and T ∈ L(V ), and suppose that u, v ∈ V are eigenvectors
of T such that u+ v is also an eigenvector. Prove that the eigenvalues of u and v
are equal.

Suppose λ, µ are the eigenvalues of u, v respectively. If λ 6= µ, then u and v are linearly
independent. Compute

T (u+ v) = Tu+ Tv = λu+ µv.

Since u, v are linearly independent, if λu+µv = αu+βv, then λ = α and µ = β. In particular,
since λ 6= µ, we cannot have an equality between λu+ µv and α(u+ v) = αu+αv for any α.

In other words, if u, v have different eigenvalues, then u+ v cannot be an eigenvector.

4. Let V be a vector space and S, T ∈ L(V ) two operators on V such that ST = TS.
Show that ker(S) is invariant under T .

If u ∈ ker(S), then, using commutativity, we see that STu = TSu = T0 = 0, and so
Tu ∈ ker(S).
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5. Let V be an n-dimensional vector space and S, T ∈ L(V ) two operators on V
such that ST = TS. Suppose that S has n distinct eigenvalues. Show that T is
diagonalizable.

Hint: Show that any eigenbasis of S is also an eigenbasis of T .

Let λ1, . . . , λn be the eigenvalues of S, and v1, . . . , vn some choice of corresponding eigenvec-
tors (of S). We proved in class (and in the book) that {v1, . . . , vn} are linearly independent
and hence a basis (since we are in an n-dimensional vector space). We claim that this basis
is an eigenbasis for T . For this, it suffices to show that each vi is an eigenvector for T .

But, using commutativity, STvi = TSvi = Tλivi = λiTvi. In other words, ker(S − λi), the
λith eigenspace of S, is invariant under T . Since S has n distinct eigenvalues, its nontrivial
eigenspaces are all one-dimensional. Thus ker(S−λi) = span(vi), and so Tvi = µivi for some
scalar µi. This is what we wanted to prove.

6. Suppose that c1, . . . , cn ∈ R are distinct real numbers. Prove that the functions
ec1x, . . . , ecnx are linearly independent in the vector space RR.

Hint: Let V := span(ec1x, . . . , ecnx) and define an operator T ∈ L(V ) by T [f ] = f ′, or
in other words T = d

dx . What are its eigenvalues and eigenvectors?

Since sums and products of smooth functions are smooth, and since exponential functions are
smooth, every function in V is smooth. Moreover, T [ecix] = cie

cix ∈ V . So T is a well-defined
linear operator V → V . But ecix is an eigenvector under T with eigenvalue ci. Since the ci’s
are distinct, the ecix’s must be linearly independent.

Remark: One can also show the linear independence as follows. Order the numbers c1, . . . , cn
in increasing order c1 < c2 < · · · < cn. Now suppose that we can find α1, . . . , αn such that 0 =
α1e

c1x+· · ·+αnecnx for all x. Suppose that αn 6= 0. Let x > maxi=1,...,n−1
Ä

1
cn−ci log( (n−1)|αi|

|αn| )
ä
.

Then |αnecnx| > |α1e
c1x| + · · · + |αnecnx| > |α1e

c1x + · · · + αne
cnx|, violating the functional

equation 0 = α1e
c1x + · · ·+ αne

cnx. So αn = 0. Now induct: use the same argument to show
that αn−1 = 0, and so on.

The advantage of the first proof is that it works with R replaced by C.
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