Math 2135: Linear Algebra

Assignment 6

Solutions

Primary questions

- 1. Give an example of $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 + 1 = 0$. For example, rotation by 45° .
- 2. Is the matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 5 \end{pmatrix}$$

diagonalizable? Justify your answer.

This operator is not diagonalizable. To see this, note that its only eigenvalues are 1 and 5, and the corresponding eigenspaces are both 1-dimensional.

- 3. (a) Suppose that R,T ∈ L(F³) each have 2,6,7 as eigenvalues. Prove that there exists an invertible operator S ∈ L(F³) such that R = STS⁻¹.
 We can find eigenbases for both of these matrices, since they have all-distinct eigenvalues. So both are conjugate to the diagonal matrix with diagonal entries 2, 6, 7, and hence they are conjugate to each other.
 - (b) Find a pair of operators $R, T \in \mathcal{L}(\mathbb{F}^4)$ with the following properties: each of them have 2, 6, 7 as eigenvalues and neither has any other eigenvalues; there does not exist an an invertible operator $S \in \mathcal{L}(\mathbb{F}^4)$ such that $R = STS^{-1}$. For example, the diagonal matrices

$$\begin{pmatrix} 2 & & \\ & 2 & \\ & & 6 & \\ & & & 7 \end{pmatrix}, \begin{pmatrix} 2 & & \\ & 6 & \\ & & 6 & \\ & & & 7 \end{pmatrix}.$$

They cannot be conjugate, since their eigenspaces are of different dimensions.

4. Suppose that $T \in \mathcal{L}(\mathbb{F}^5)$ and that the eigenspace E(8,T) is 4-dimensional. Show that at least one of T - 2I and T - 6I is invertible.

The sum of eigenspaces is always direct. Thus the eigenspaces E(2,T) and E(6,T) cannot both be at-least-one-dimensional since 4 + 1 + 1 > 5.

5. Suppose $T \in \mathcal{L}(V)$. Prove that $T/\operatorname{im}(T) = 0$.

By definition, $T/\operatorname{im}(T)$ is the operator in $V/\operatorname{im}(T) = \{v + \operatorname{im}(T) : v \in V\}$ that takes $v + \operatorname{im}(T)$ to $Tv + \operatorname{im}(T)$. But $Tv + \operatorname{im}(T) = \operatorname{im}(T)$, since $Tv \in \operatorname{im}(T)$, and $\operatorname{im}(T) = 0 + \operatorname{im}(T) \in V/\operatorname{im}(T)$

is the zero vector. So $T/\operatorname{im}(T)$ is the operator on $V/\operatorname{im}(T)$ that takes everything to 0, and so it is the zero operator.

6. Suppose that V is a finite-dimensional vector space, $T \in \mathcal{L}(V)$, and $U \subset V$ is a T-invariant vector subspace. Show that each eigenvalue of T/U is also an eigenvalue of T.

Let λ be an eigenvalue of T/U. Note that $(T/U) - \lambda = (T - \lambda)/U$; λ being an eigenvalue of T/U is the statement that this operator is not injective. Since V/U is finite-dimensional (its dimension is at most dim V), non-injectivity of an operator on V/U is equivalent to nonsurjectivity. So let $v + U \in V/U$ be an element which is not in the image of $(T - \lambda)/U$. In other words, there does not exist a $w \in V$ such that $(T - \lambda)w + U = v + U$. Then certainly there is no w solving $(T - \lambda)w = v$. So v is not in the image of $T - \lambda$, and so $T - \lambda$ is not surjective. Since V is finite-dimensional, non-surjectivity of an operator on V is equivalent to non-injectivity. So $T - \lambda$ is not injective, and λ is an eigenvalue of T.

Bonus questions

7. Show that the finite-dimensionality is necessary in exercise 6. Specifically, find a (necessarily infinite-dimensional) vector space V and an operator $T \in \mathcal{L}(V)$ such that T has no eigenvalues at all, but such that there is an invariant subspace U for which T/U has an eigenvalue.

For example, let V be the vector space $\mathbb{F}[x]$ of polynomials, and $T = \hat{x}$ the operator which multiplies a polynomial by x. Then T cannot have any eigenvalues, because if $f(x) \in \mathbb{F}[x]$ is nonzero, then the degree of Tf is one more than the degree of λf (and so they cannot be equal).

Let U = im(T). Then $1 \notin U$, and so V/U is not the zero vector space. By exercise 5, T/U = 0, which has 0 as an eigenvalue.

8. In exercises 6 and 7, what would happen if you used generalized eigenvalues rather than eigenvalues?

The statement still fails. Let $V = \mathbb{R}^{\mathbb{R}}$ be the space of all functions, and T the operator that shifts $f(x) \mapsto f(x-1)$. Then T is invertible, and so 0 is not a generalized eigenvalue of T.

Let U be the subspace of functions which vanish on negative values of x. In other words

$$U = \{ f \in \mathbb{R}^{\mathbb{R}} \text{ s.t. } f(x) = 0 \forall x < 0 \}.$$

Then we claim that U is T-invariant. Indeed, suppose $f \in U$ and x < 0. Then x - 1 < 0 so f(x - 1) = 0. So the function Tf, defined by (Tf)(x) = f(x - 1), is in U.

Note that $T|_U$ is not invertible. Indeed, its image consists of the functions which vanish on x < 1.

What is the quotient space V/U? We can choose a splitting $V = U \oplus W$ where $W = \{f \in \mathbb{R}^{\mathbb{R}} \text{ s.t. } f(x) = 0 \forall x \geq 0\}$. This splitting selects an isomorphism $V/U \cong W$. Under this isomorphism, the quotient operator T/U sends a function f to the function Tf defined by

$$(Tf)(x) = \begin{cases} f(x-1), & x < 0\\ 0, & x \ge 0 \end{cases}$$

This operator is not invertible: its kernel consists of the functions supported in the interval (0, 1].

Thus 0 is a generalized eigenvalue of T/U (indeed, an actual eigenvalue). But 0 was not an eigenvalue of T.