Math 2135: Linear Algebra

Midterm exam

Solutions

Part A.

The next three pages presents you with six statements. Every one of them is false. For each one, give a short (one or two sentences) explanation of why.

- 1. The empty set is a vector space.
 - Every space is required to contain a zero vector.
- 2. If V is a vector space and $\{v_1, \ldots, v_m\}$ is a linearly independent set of vectors in V, and $\{w_1, \ldots, w_n\}$ is a spanning set of V, then m < n.
 - It is always true that $m \leq n$, but the strict inequality might not hold.
- 3. There exists a linear transformation $\mathbb{R}^7 \to \mathbb{R}^4$ with two-dimensional kernel.
 - If $T: \mathbb{R}^7 \to \mathbb{R}^4$ is a linear transformation, then $\dim(\operatorname{im} T) \leq 4$, and so $\dim(\ker T) = \dim(\mathbb{R}^7) \dim(\operatorname{im} T) = 7 \dim(\operatorname{im} T) \geq 3$.
- 4. Suppose $T: V \to W$ is a linear transformation, and $\{v_1, \ldots, v_n\}$ is a basis for V. If $\{Tv_1, \ldots, Tv_n\}$ spans W, then T is injective.
 - If $\{Tv_1, \ldots, Tv_n\}$ spans W, then T is surjective, but not necessarily injective. Injectivity of T is equivalent to $\{Tv_1, \ldots, Tv_n\}$ being linearly independent.
- 5. Suppose V_1 and V_2 are finite-dimensional vector space. Then $\dim(V_1 \times V_2) = \dim(V_1) \times \dim(V_2)$.
 - The correct formula is $\dim(V_1 \times V_2) = \dim(V_1) + \dim(V_2)$.
- 6. If $T:V\to W$ is a linear transformation, and $U\subseteq V$ is a vector subspace, then there exists a linear transformation $\bar T:V/U\to W$ defined by $\bar T(v+U)=T(v)$.
 - This formula for \overline{T} only defines a function $V \to W$ if $\ker T \supseteq U$.

Part B.

Let $V = \mathbb{R}^{\leq 2}[x]$ be the vector space of polynomials of degree ≤ 2 . (This vector space is denoted $\mathcal{P}_2(\mathbb{R})$ in the textbook.) For each real number $r \in \mathbb{R}$, let $\operatorname{ev}_r : V \to \mathbb{R}$ denote the linear functional that sends $f(x) \mapsto f(r)$.

Show that the set $\{x^2-1, x^2-x, x^2+x\}$ is a basis for V, and that the set $\{-\operatorname{ev}_0, \frac{1}{2}\operatorname{ev}_{-1}, \frac{1}{2}\operatorname{ev}_1\}$ is its dual basis.

We know that dim V=3 (e.g. because the set $\{1,x,x^2\}$ is a basis). So to show that $\{x^2-1,x^2-x,x^2+x\}$ is a basis for V, it suffices to show that it is linearly independent. Suppose that $a,b,c\in\mathbb{R}$ such that

$$0 = a(x^{2} - 1) + b(x^{2} - x) + c(x^{2} + x).$$

Unpacked, we see that

$$0 = -a + (c - b)x + (a + b + c)x^{2}.$$

But then 0 = -a = c - b = a + b + c. Hence a = 0, and so 0 = c + b. Together with 0 = c - b, we see that b = c = 0.

Now we check the statement about dual bases. We need to check the following nine equations:

$$-\operatorname{ev}_0(x^2 - 1) = 1 \qquad \qquad \frac{1}{2}\operatorname{ev}_{-1}(x^2 - 1) = 0 \qquad \qquad \frac{1}{2}\operatorname{ev}_1(x^2 - 1) = 0$$

$$-\operatorname{ev}_0(x^2 - x) = 0 \qquad \qquad \frac{1}{2}\operatorname{ev}_{-1}(x^2 - x) = 1 \qquad \qquad \frac{1}{2}\operatorname{ev}_1(x^2 - x) = 0$$

$$-\operatorname{ev}_0(x^2 + x) = 0 \qquad \qquad \frac{1}{2}\operatorname{ev}_{-1}(x^2 + x) = 0 \qquad \qquad \frac{1}{2}\operatorname{ev}_1(x^2 + x) = 1$$

In other words, we need to check that

$$-(0^{2} - 1) = 1$$

$$-(0^{2} - 0) = 0$$

$$-(0^{2} - 0) = 0$$

$$\frac{1}{2}((-1)^{2} - (-1)) = 1$$

$$\frac{1}{2}(1^{2} - 1) = 0$$

$$\frac{1}{2}(1^{2} - 1) = 0$$

$$\frac{1}{2}(1^{2} - 1) = 0$$

$$\frac{1}{2}(1^{2} + 1) = 1$$

These are all in fact true.