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1. Let G be a group.

(a) What does it mean to say that a subgroup K ⊂ G is normal?

(b) Suppose that H ⊂ G is a subgroup, and K ⊂ G is a normal subgroup. Show
that the product

HK := {hk|h ∈ H, k ∈ K}

is a subgroup of G.

(a) A subgroup K ⊂ G is normal if it is preserved by inner automorphisms of G. Spelled
out, this means that if k ∈ K and g ∈ G, then gkg−1 ∈ K.

(b) HK contains 1 = 1 · 1, since 1 ∈ H and 1 ∈ K.

Suppose that h1k1, h2k2 ∈ HK. Then

h1k1h2k2 = (h1h2)((h
−1
2 k1h2)k2).

Note that h−12 k1h2 ∈ K (take g = h−12 in part (a)), and so h1h2 ∈ H and (h−12 k1h2)k2 ∈
K. So HK is closed under multiplication.

Given hk ∈ HK, compute

(hk)−1 = k−1h−1 = (h−1)(hk−1h−1).

But hk−1h−1 ∈ K since K is normal (and h−1 ∈ H since H is a subgroup).
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2. Let G be a finite group.

(a) Define the centre Z(G) of G and the derived subgroup G′ = [G,G] of G.

(b) Show that both Z(G) and G′ are normal subgroups of G.

(c) Let p be a prime. Show that if G is nonabelian of order p3, then Z(G) = G′.

(d) Show that if G is nonabelian of order 6, then Z(G) 6= G′.

(a) The center is Z(G) = {g ∈ G|gh = hg ∀h ∈ G}.
The derived subgroup is the subgroup generated by elements of the form ghg−1h−1. It
is the smallest normal subgroup N ⊂ G such that N/G is abelian.

(b) A subgroup is normal if it is preserved by all inner automorphisms. These subgroups
are better than normal: they are characteristic, meaning that they are preserved by all
automorphisms. Indeed, this is manifest: the definitions of Z(G) and G′ are obviously
isomorphism-invariant.

(c) This was part of a homework problem. If G is has order p3, then it contains a nontrivial
centre. If G is nonabelian, then G/Z(G) is nontrivial. So G/Z(G) has order either p or
p2, and hence is abelian. Thus G′ ⊂ Z(G), since G′ is the smallest subgroup for which
the quotient is abelian. Again using that since G is nonabelian, we know that G′ 6= {1}.
So it suffices to show that Z(G) has exact order p. Suppose for contradiction that Z(G)
had order p2, and choose any element x ∈ G r Z(G). Then the p3 many elements zxi

where z ranges over Z(G) and i ranges from 0 to p− 1 would be all distinct. But they
all commute with each other, contradicting the nonabelianness of G.

(d) The derived subgroup has order three, whereas the centre is trivial.
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3. Prove that there is no simple group of order 980 = 22 × 5 × 72. Hint: Constrain
the number of Sylow subgroups.

The number of Sylow p-subgroups is 1 (mod p) and divides the index of a Sylow p-subgroup.
In particular, the number of Sylow 2-subgroups is odd and divides 5 × 72 (not very useful);
the number of Sylow 5-subgroups is 1 (mod 5) and divides 196 = 22 × 72, and so is either 1
or 196; and the number of Sylow 7-subgroups is 1 (mod 7) and divides 20. Aha! The only
factor of 20 which is 1 (mod 7) is 1 itself, so there is a unique Sylow 7-subgroup, which is
then necessarily normal.
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4. (a) What does it mean for a field extension F ⊂ E to have degree n?

(b) Prove that if F ⊂ E has degree n < ∞, then every element of E is a root of
some polynomial over F of degree ≤ n.

(c) State, but do not prove, a relationship between the degree of F ⊂ E and the
order of Gal(E/F ).

(a) If F ⊂ E is a field extension, then the multiplication makes E into an F -vector space.
The degree is its dimension:

[E : F ] = dimF E.

(b) Suppose [E : F ] = n < ∞. Given α ∈ E, the list 1, α, α2, . . . , αn ∈ E has length
n+ 1 > dimE, and so must admit a nontrivial linear dependency. But this dependency
is a polynomial equation satisfied by α.

(c) [E : F ] ≥ # Gal(E/F ).
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5. Consider the field extension Q ⊂ Q(
√

2,
√

5,
√

7).

(a) Is this extension Galois?

(b) Find all intermediate fields. Describe these fields as simple extensions over Q,
i.e. give a single generator for each intermediate extension.

(c) Give an example of a transcendental extension of Q(
√

2,
√

5,
√

7).

(a) Yes, this extension is Galois. The Galois group is (Z/2)3 consisting of the sign flips
of subsets of the generators. (For example, there is a unique automorphism taking√

2 7→ −
√

2,
√

5 7→ −
√

5, and
√

7 7→
√

7.)

(b) The subfields are in bijection with the subgroups of (Z/2)3.

The trivial subgroup corresponds to Q(
√

2,
√

5,
√

7) itself. It can be generated by the
single element

√
2 +
√

5 +
√

7.

There are seven subgroups of order 2. These correspond to quartic extensions of Q:

• Three of these subgroups flip the sign of a single
√
a, where a ∈ {2, 5, 7}. The

corresponding field is Q(
√
b+
√
c), where {b, c} = {2, 5, 7}r {a}.

• Three of these subgroups act as
√
a 7→ −

√
a,
√
b 7→ −

√
b,
√
c 7→
√
c, where {a, b, c} =

{2, 5, 7}. The corresponding fields are Q(
√
c+
√
ab).

• One order-2 subgroup flips the signs of all three generators. The corresponding field
is Q(

√
10 +

√
14) = Q(

√
10 +

√
35) = Q(

√
14 +

√
35).

The are also seven subgroups of order 4. These correspond to quadratic extensions
Q(
√
m) where m ∈ {2, 5, 7, 10, 14, 35, 70}.

Finally, the subgroup of the Galois group of order 8 corresponds to the field Q = Q(1).

(c) For example, R,C,Q(
√

2,
√

5,
√

7, π), . . . .
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6. Set F = Q(
√

7), and set K1 = F (
»

2 +
√

7) and K2 = F (
»

2−
√

7). Let E = K1K2 be
the composite field.

(a) Which of the following extensions are Galois?

Q ⊂ F, Q ⊂ K1, Q ⊂ K2, Q ⊂ E,
F ⊂ K1, F ⊂ K2, F ⊂ E, K1 ⊂ E, K2 ⊂ E

(b) For the extensions in part (a) which are Galois, what is the Galois group?

We remark that K1 ⊂ R whereas K2 6⊂ R, and so K1 6= K2. On the other hand, K1
∼= K2

are isomorphic (lifting the automorphism
√

7 7→ −
√

7 of F ).

The extensions Q ⊂ F, F ⊂ K1, F ⊂ K2,K1 ⊂ E,K2 ⊂ E are all quadratic and hence Galois
with Galois group Z/2.

The extension F ⊂ E is splitting and hence Galois (since we are in characteristic 0). Its
degree is 4, and it contains the inequivalent subfields K1,K2, and so the Galois group is
V = (Z/2)2 (and not Z/4).

The extensions Q ⊂ K1,K2 are not Galois. Indeed, the automorphism of F does not extend
to an automorphism of either K1 or K2 (but rather to an isomorphism between them) and
so K1,K2 are not splitting.

The extension Q ⊂ E is Galois, since E is the splitting field of the minimal polynomial of»
2 +
√

7. The Galois group is an order-8 subgroup of S4, and hence dihedral of order 8.
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7. Find the Galois groups of the following polynomials over Q and over R:

(a) x3 + 3x2 + 2x− 1.
Hint: The discriminant is −23.

(b) x4 − 4x2 + x+ 1.
Hint: The discriminant is 1957 and the resolvent cubic is x3 + 4x2 − 4x+ 15.

(a) This polynomial is irreducible over Q by the rational root test: if it were reducible, then
one factor would be linear, and so it would have a rational, hence integral, root, which
would necessarily divide 1; but neither ±1 is a root. The discriminant is not a square,
so the Galois group is S3.

Over R, the discriminant is not a square but the polynomial does have a root. So there
is a unique real root, the splitting field is C, and the Galois group is Z/2.

(b) This polynomial is irreducible over Q. To see this, note first that it does not have a
rational root (which would necessarily be ±1). Suppose that it factored as a product of
quadratics. Then it would factor over Z, and hence factor into a product of quadratics
over Z/3 = F3. But working mod 3 we have

x4 − 4x2 + x+ 1 = (x+ 1)(x3 − x+ 1) (mod 3)

and x3 − x+ 1 is irreducible over F3 (since it doesn’t have a root). But factorization of
polynomials over F3 (or any field) is unique.

The discriminant 1957 = 19×103 is not a square in Q. Furthermore, the resolvent cubic
is irreducible over Q: if it were reducible, it would have a root which would divide 15
and be divisible by 3 (since the cubic is x3 + x2 − x (mod 3)), and direct checking rules
out ±3,±15. So the Galois group over Q is S4.

Over R, this quartic polynomial factors completely. Indeed, it takes the values

x x4 − 4x2 + x+ 1

−∞ +∞
−1 −3
0 1
1 −1

+∞ +∞

and so must have at least four real roots. So the Galois group is trivial.
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8. (a) What does it mean for a field extension F ⊂ E to be separable?

(b) What does it mean for a field extension F ⊂ E to be purely inseparable?

(c) Give an example of a nontrivial field extension which is purely inseparable.

(d) Give an example of a nontrivial field extension which is neither separable
nor purely inseparable.

(a,b) A polynomial f(x) ∈ F [x] is separable if it has no repeated roots (in any field extension),
or equivalently if f(x) and the derivative f ′(x) = df

dx are relatively prime. It is purely
inseparable if it has only one root in any field extension, i.e. if after a field extension
f(x) = (x− α)n.

A field extension F ⊂ E is separable, resp. purely inseparable, if it is algebraic and
furthermore for every α ∈ E, the minimal polynomial of α over F is separable, resp.
purely inseparable.

(c) An example of a nontrivial purely inseparable extension is to start with a field K of
characteristic p, set F = K(t), the field of Laurent polynomials in one variable, and set
E = F ( p

√
t).

(d) An example which is neither separable nor purely inseparable, take F = K(t) as in part
(c), but take E = F ( m

√
t) where m is divisible by p but not a power of p.
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9. (a) Suppose that F is field. Prove that if G ⊂ F× is a finite subgroup, then G is
cyclic. Conclude that if F is finite, then F× is cyclic.

(b) Describe the group C×.

(c) Prove that for each prime p and each positive integer n, there exists a field
Fpn of order pn, and that it is unique up to isomorphism.

(a) Suppose for contradiction that G is not cyclic. Because G is abelian, if it is finite then it
factors into a product of cyclic groups; if it is not cyclic, then G must contain a subgroup
isomorphic to (Z/p)2 for some prime p. But then the polynomial xp − 1 would have at
least p2 roots in F .

(b) This (infinite!) group is isomorphic to R×S1, where S1 = U(1) is the circle group. The
isomorphism is given by polar coordinates: (r, θ) 7→ r×eiθ. There are plenty of subgroups
which cannot be generated by a single generator, for example the subgroup consisting
of complex numbers of the form 2a × eib for a, b ∈ Z. (This subgroup is isomorphic to
Z2. That it is not a quotient of Z2 follows immediately from the irrationality of π.)

(c) Suppose that there is such a field. Then F×pn is cyclic of order N = pn − 1. Then this

field completely splits the polynomial xN − 1 ∈ Fp[x]. So if Fpn exists, then it is said
splitting field, confirming uniqueness.

It suffices to show that the splitting field of xN − 1, or equivalently of xp
n − x, contains

precisely pn elements. Equivalently, it suffices to show that the solutions to xp
n

= x are a
field. They are obviously closed under multiplication, and closure under addition follows
from the Frosh’s Dream — the statement that, in characteristic p, (x+ y)p = xp + yp.
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