PhD Comprehensive Exam: Algebra Part II (nonspecialist) & Math 4055/5055 Final Exam

Spring 2022

Solutions to sample exam

- 1. Let G be a group.
 - (a) What does it mean to say that a subgroup $K \subset G$ is normal?
 - (b) Suppose that $H \subset G$ is a subgroup, and $K \subset G$ is a normal subgroup. Show that the *product*

$$HK := \{hk | h \in H, k \in K\}$$

is a subgroup of G.

- (a) A subgroup $K \subset G$ is normal if it is preserved by inner automorphisms of G. Spelled out, this means that if $k \in K$ and $g \in G$, then $gkg^{-1} \in K$.
- (b) HK contains $1 = 1 \cdot 1$, since $1 \in H$ and $1 \in K$. Suppose that $h_1k_1, h_2k_2 \in HK$. Then

$$h_1k_1h_2k_2 = (h_1h_2)((h_2^{-1}k_1h_2)k_2).$$

Note that $h_2^{-1}k_1h_2 \in K$ (take $g = h_2^{-1}$ in part (a)), and so $h_1h_2 \in H$ and $(h_2^{-1}k_1h_2)k_2 \in K$. So HK is closed under multiplication. Given $hk \in HK$, compute

$$(hk)^{-1} = k^{-1}h^{-1} = (h^{-1})(hk^{-1}h^{-1}).$$

But $hk^{-1}h^{-1} \in K$ since K is normal (and $h^{-1} \in H$ since H is a subgroup).

- 2. Let G be a finite group.
 - (a) Define the centre Z(G) of G and the derived subgroup G' = [G,G] of G.
 - (b) Show that both Z(G) and G' are normal subgroups of G.
 - (c) Let p be a prime. Show that if G is nonabelian of order p^3 , then Z(G) = G'.
 - (d) Show that if G is nonabelian of order 6, then $Z(G) \neq G'$.
 - (a) The center is $Z(G) = \{g \in G | gh = hg \forall h \in G\}$. The derived subgroup is the subgroup generated by elements of the form $ghg^{-1}h^{-1}$. It is the smallest normal subgroup $N \subset G$ such that N/G is abelian.
 - (b) A subgroup is *normal* if it is preserved by all inner automorphisms. These subgroups are better than normal: they are *characteristic*, meaning that they are preserved by all automorphisms. Indeed, this is manifest: the definitions of Z(G) and G' are obviously isomorphism-invariant.
 - (c) This was part of a homework problem. If G is has order p^3 , then it contains a nontrivial centre. If G is nonabelian, then G/Z(G) is nontrivial. So G/Z(G) has order either p or p^2 , and hence is abelian. Thus $G' \subset Z(G)$, since G' is the smallest subgroup for which the quotient is abelian. Again using that since G is nonabelian, we know that $G' \neq \{1\}$. So it suffices to show that Z(G) has exact order p. Suppose for contradiction that Z(G) had order p^2 , and choose any element $x \in G \setminus Z(G)$. Then the p^3 many elements zx^i where z ranges over Z(G) and i ranges from 0 to p-1 would be all distinct. But they all commute with each other, contradicting the nonabelianness of G.
 - (d) The derived subgroup has order three, whereas the centre is trivial.

3. Prove that there is no simple group of order $980 = 2^2 \times 5 \times 7^2$. Hint: Constrain the number of Sylow subgroups.

The number of Sylow *p*-subgroups is 1 (mod *p*) and divides the index of a Sylow *p*-subgroup. In particular, the number of Sylow 2-subgroups is odd and divides 5×7^2 (not very useful); the number of Sylow 5-subgroups is 1 (mod 5) and divides $196 = 2^2 \times 7^2$, and so is either 1 or 196; and the number of Sylow 7-subgroups is 1 (mod 7) and divides 20. Aha! The only factor of 20 which is 1 (mod 7) is 1 itself, so there is a unique Sylow 7-subgroup, which is then necessarily normal.

- 4. (a) What does it mean for a field extension $F \subset E$ to have degree n?
 - (b) Prove that if $F \subset E$ has degree $n < \infty$, then every element of E is a root of some polynomial over F of degree $\leq n$.
 - (c) State, but do not prove, a relationship between the degree of $F \subset E$ and the order of Gal(E/F).
 - (a) If $F \subset E$ is a field extension, then the multiplication makes E into an F-vector space. The *degree* is its dimension:

 $[E:F] = \dim_F E.$

- (b) Suppose $[E : F] = n < \infty$. Given $\alpha \in E$, the list $1, \alpha, \alpha^2, \ldots, \alpha^n \in E$ has length $n+1 > \dim E$, and so must admit a nontrivial linear dependency. But this dependency *is* a polynomial equation satisfied by α .
- (c) $[E:F] \ge \# \operatorname{Gal}(E/F).$

- 5. Consider the field extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{7})$.
 - (a) Is this extension Galois?
 - (b) Find all intermediate fields. Describe these fields as simple extensions over Q,
 i.e. give a single generator for each intermediate extension.
 - (c) Give an example of a transcendental extension of $\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt{7})$.
 - (a) Yes, this extension is Galois. The Galois group is $(\mathbb{Z}/2)^3$ consisting of the sign flips of subsets of the generators. (For example, there is a unique automorphism taking $\sqrt{2} \mapsto -\sqrt{2}, \sqrt{5} \mapsto -\sqrt{5}$, and $\sqrt{7} \mapsto \sqrt{7}$.)
 - (b) The subfields are in bijection with the subgroups of (Z/2)³. The trivial subgroup corresponds to Q(√2, √5, √7) itself. It can be generated by the single element √2 + √5 + √7.

There are seven subgroups of order 2. These correspond to quartic extensions of Q:

- Three of these subgroups flip the sign of a single \sqrt{a} , where $a \in \{2, 5, 7\}$. The corresponding field is $\mathbb{Q}(\sqrt{b} + \sqrt{c})$, where $\{b, c\} = \{2, 5, 7\} \setminus \{a\}$.
- Three of these subgroups act as $\sqrt{a} \mapsto -\sqrt{a}, \sqrt{b} \mapsto -\sqrt{b}, \sqrt{c} \mapsto \sqrt{c}$, where $\{a, b, c\} = \{2, 5, 7\}$. The corresponding fields are $\mathbb{Q}(\sqrt{c} + \sqrt{ab})$.
- One order-2 subgroup flips the signs of all three generators. The corresponding field is $\mathbb{Q}(\sqrt{10} + \sqrt{14}) = \mathbb{Q}(\sqrt{10} + \sqrt{35}) = \mathbb{Q}(\sqrt{14} + \sqrt{35}).$

The are also seven subgroups of order 4. These correspond to quadratic extensions $\mathbb{Q}(\sqrt{m})$ where $m \in \{2, 5, 7, 10, 14, 35, 70\}$.

Finally, the subgroup of the Galois group of order 8 corresponds to the field $\mathbb{Q} = \mathbb{Q}(1)$. (c) For example, $\mathbb{R}, \mathbb{C}, \mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{7}, \pi), \dots$

- 6. Set $F = \mathbb{Q}(\sqrt{7})$, and set $K_1 = F(\sqrt{2+\sqrt{7}})$ and $K_2 = F(\sqrt{2-\sqrt{7}})$. Let $E = K_1K_2$ be the composite field.
 - (a) Which of the following extensions are Galois?

(b) For the extensions in part (a) which are Galois, what is the Galois group?

We remark that $K_1 \subset \mathbb{R}$ whereas $K_2 \not\subset \mathbb{R}$, and so $K_1 \neq K_2$. On the other hand, $K_1 \cong K_2$ are isomorphic (lifting the automorphism $\sqrt{7} \mapsto -\sqrt{7}$ of F).

The extensions $\mathbb{Q} \subset F, F \subset K_1, F \subset K_2, K_1 \subset E, K_2 \subset E$ are all quadratic and hence Galois with Galois group $\mathbb{Z}/2$.

The extension $F \subset E$ is splitting and hence Galois (since we are in characteristic 0). Its degree is 4, and it contains the inequivalent subfields K_1, K_2 , and so the Galois group is $V = (\mathbb{Z}/2)^2$ (and not $\mathbb{Z}/4$).

The extensions $\mathbb{Q} \subset K_1, K_2$ are not Galois. Indeed, the automorphism of F does not extend to an automorphism of either K_1 or K_2 (but rather to an isomorphism between them) and so K_1, K_2 are not splitting.

The extension $\mathbb{Q} \subset E$ is Galois, since E is the splitting field of the minimal polynomial of $\sqrt{2+\sqrt{7}}$. The Galois group is an order-8 subgroup of S_4 , and hence dihedral of order 8.

7. Find the Galois groups of the following polynomials over \mathbb{Q} and over \mathbb{R} :

- (a) $x^3 + 3x^2 + 2x 1$. Hint: The discriminant is -23.
- (b) $x^4 4x^2 + x + 1$. Hint: The discriminant is 1957 and the resolvent cubic is $x^3 + 4x^2 - 4x + 15$.
- (a) This polynomial is irreducible over \mathbb{Q} by the rational root test: if it were reducible, then one factor would be linear, and so it would have a rational, hence integral, root, which would necessarily divide 1; but neither ± 1 is a root. The discriminant is not a square, so the Galois group is S_3 .

Over \mathbb{R} , the discriminant is not a square but the polynomial does have a root. So there is a unique real root, the splitting field is \mathbb{C} , and the Galois group is $\mathbb{Z}/2$.

(b) This polynomial is irreducible over \mathbb{Q} . To see this, note first that it does not have a rational root (which would necessarily be ± 1). Suppose that it factored as a product of quadratics. Then it would factor over \mathbb{Z} , and hence factor into a product of quadratics over $\mathbb{Z}/3 = \mathbb{F}_3$. But working mod 3 we have

$$x^{4} - 4x^{2} + x + 1 = (x + 1)(x^{3} - x + 1) \pmod{3}$$

and $x^3 - x + 1$ is irreducible over \mathbb{F}_3 (since it doesn't have a root). But factorization of polynomials over \mathbb{F}_3 (or any field) is unique.

The discriminant $1957 = 19 \times 103$ is not a square in Q. Furthermore, the resolvent cubic is irreducible over Q: if it were reducible, it would have a root which would divide 15 and be divisible by 3 (since the cubic is $x^3 + x^2 - x \pmod{3}$), and direct checking rules out $\pm 3, \pm 15$. So the Galois group over Q is S_4 .

Over \mathbb{R} , this quartic polynomial factors completely. Indeed, it takes the values

x	$x^4 - 4x^2 + x + 1$
$-\infty$	$+\infty$
-1	-3
0	1
1	-1
$+\infty$	$+\infty$

and so must have at least four real roots. So the Galois group is trivial.

- 8. (a) What does it mean for a field extension $F \subset E$ to be *separable*?
 - (b) What does it mean for a field extension $F \subset E$ to be *purely inseparable*?
 - (c) Give an example of a nontrivial field extension which is purely inseparable.
 - (d) Give an example of a nontrivial field extension which is neither separable nor purely inseparable.
 - (a,b) A polynomial $f(x) \in F[x]$ is *separable* if it has no repeated roots (in any field extension), or equivalently if f(x) and the derivative $f'(x) = \frac{df}{dx}$ are relatively prime. It is *purely inseparable* if it has only one root in any field extension, i.e. if after a field extension $f(x) = (x \alpha)^n$.

A field extension $F \subset E$ is *separable*, resp. *purely inseparable*, if it is algebraic and furthermore for every $\alpha \in E$, the minimal polynomial of α over F is separable, resp. purely inseparable.

- (c) An example of a nontrivial purely inseparable extension is to start with a field K of characteristic p, set F = K(t), the field of Laurent polynomials in one variable, and set $E = F(\sqrt[p]{t})$.
- (d) An example which is neither separable nor purely inseparable, take F = K(t) as in part (c), but take $E = F(\sqrt[m]{t})$ where m is divisible by p but not a power of p.

- 9. (a) Suppose that F is field. Prove that if $G \subset F^{\times}$ is a finite subgroup, then G is cyclic. Conclude that if F is finite, then \mathbb{F}^{\times} is cyclic.
 - (b) Describe the group \mathbb{C}^{\times} .
 - (c) Prove that for each prime p and each positive integer n, there exists a field \mathbb{F}_{p^n} of order p^n , and that it is unique up to isomorphism.
 - (a) Suppose for contradiction that G is not cyclic. Because G is abelian, if it is finite then it factors into a product of cyclic groups; if it is not cyclic, then G must contain a subgroup isomorphic to $(\mathbb{Z}/p)^2$ for some prime p. But then the polynomial $x^p 1$ would have at least p^2 roots in F.
 - (b) This (infinite!) group is isomorphic to $\mathbb{R} \times S^1$, where $S^1 = U(1)$ is the circle group. The isomorphism is given by polar coordinates: $(r, \theta) \mapsto r \times e^{i\theta}$. There are plenty of subgroups which cannot be generated by a single generator, for example the subgroup consisting of complex numbers of the form $2^a \times e^{ib}$ for $a, b \in \mathbb{Z}$. (This subgroup is isomorphic to \mathbb{Z}^2 . That it is not a quotient of \mathbb{Z}^2 follows immediately from the irrationality of π .)
 - (c) Suppose that there is such a field. Then $\mathbb{F}_{p^n}^{\times}$ is cyclic of order $N = p^n 1$. Then this field completely splits the polynomial $x^N 1 \in \mathbb{F}_p[x]$. So if \mathbb{F}_{p^n} exists, then it is said splitting field, confirming uniqueness.

It suffices to show that the splitting field of $x^N - 1$, or equivalently of $x^{p^n} - x$, contains precisely p^n elements. Equivalently, it suffices to show that the solutions to $x^{p^n} = x$ are a field. They are obviously closed under multiplication, and closure under addition follows from the *Frosh's Dream* — the statement that, in characteristic p, $(x + y)^p = x^p + y^p$.