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Solutions to sample exam



1. Let G be a group.

()
(b)

What does it mean to say that a subgroup K C G is normal?

Suppose that H C G is a subgroup, and K C G is a normal subgroup. Show
that the product
HK :={hklh e H k € K}

is a subgroup of G.

A subgroup K C G is normal if it is preserved by inner automorphisms of G. Spelled
out, this means that if k € K and g € G, then gkg™' € K.

HK contains 1 =1-1,sincel1 € H and 1 € K.
Suppose that hiki, hokeo € HK. Then

hikihoks = (h1ha)((hy kiha)ks).

Note that hy 'kihy € K (take g = hy ! in part (a)), and so hihy € H and (hy 'k1ha)ks €
K. So HK is closed under multiplication.
Given hk € HK, compute

(hk)™' = k77t = (Y (RETATY).

But hk~'h™! € K since K is normal (and h~! € H since H is a subgroup).



2. Let G be a finite group.

()
(b)
(c)
(d)

(a)

(b)

(d)

Define the centre Z(G) of G and the derived subgroup G' =[G, G| of G.
Show that both Z(G) and G’ are normal subgroups of G.

Let p be a prime. Show that if G is nonabelian of order p3, then Z(G) = G'.
Show that if G is nonabelian of order 6, then Z(G) # G'.

The center is Z(G) = {g € G|gh = hgVh € G}.
The derived subgroup is the subgroup generated by elements of the form ghg~'h~!. It
is the smallest normal subgroup N C G such that N/G is abelian.

A subgroup is normal if it is preserved by all inner automorphisms. These subgroups
are better than normal: they are characteristic, meaning that they are preserved by all
automorphisms. Indeed, this is manifest: the definitions of Z(G) and G’ are obviously
isomorphism-invariant.

This was part of a homework problem. If G is has order p3, then it contains a nontrivial
centre. If G is nonabelian, then G/Z(G) is nontrivial. So G/Z(G) has order either p or
p?, and hence is abelian. Thus G’ C Z(G), since G’ is the smallest subgroup for which
the quotient is abelian. Again using that since G is nonabelian, we know that G’ # {1}.
So it suffices to show that Z(G) has exact order p. Suppose for contradiction that Z(G)
had order p?, and choose any element € G ~. Z(G). Then the p? many elements zz
where z ranges over Z(G) and i ranges from 0 to p — 1 would be all distinct. But they
all commute with each other, contradicting the nonabelianness of G.

The derived subgroup has order three, whereas the centre is trivial.



3. Prove that there is no simple group of order 980 = 22 x 5 x 72. Hint: Constrain
the number of Sylow subgroups.

The number of Sylow p-subgroups is 1 (mod p) and divides the index of a Sylow p-subgroup.
In particular, the number of Sylow 2-subgroups is odd and divides 5 x 72 (not very useful);
the number of Sylow 5-subgroups is 1 (mod 5) and divides 196 = 22 x 72, and so is either 1
or 196; and the number of Sylow 7-subgroups is 1 (mod 7) and divides 20. Aha! The only
factor of 20 which is 1 (mod 7) is 1 itself, so there is a unique Sylow 7-subgroup, which is
then necessarily normal.



4. (a) What does it mean for a field extension F' C F to have degree n?

(b) Prove that if ' C E has degree n < oo, then every element of F is a root of
some polynomial over F' of degree < n.

(c) State, but do not prove, a relationship between the degree of F' C E and the
order of Gal(E/F).

(a) If FF C E is a field extension, then the multiplication makes E into an F-vector space.
The degree is its dimension:
[E : F] =dimp E.

(b) Suppose [E : F] = n < oo. Given a € FE, the list 1,a,0?,...,0" € E has length

n+1 > dim F, and so must admit a nontrivial linear dependency. But this dependency
is a polynomial equation satisfied by a.

(c) [E:F)>#Gal(E/F).



5. Consider the field extension Q C Q(v/2,V5, V7).

()
(b)

(c)
(a)

(b)

()

Is this extension Galois?

Find all intermediate fields. Describe these fields as simple extensions over @,
i.e. give a single generator for each intermediate extension.

Give an example of a transcendental extension of Q(v/2,v/5, V7).

Yes, this extension is Galois. The Galois group is (Z/2)® consisting of the sign flips
of subsets of the generators. (For example, there is a unique automorphism taking

V2 =2, V5= —/5, and V7 — V7))
The subfields are in bijection with the subgroups of (Z/2)3.
The trivial subgroup corresponds to Q(v/2,v/5,+/7) itself. It can be generated by the
single element v/2 + /5 + /7.
There are seven subgroups of order 2. These correspond to quartic extensions of Q:
e Three of these subgroups flip the sign of a single \/a, where a € {2,5,7}. The
corresponding field is Q(v/b + v/c), where {b,c} = {2,5,7} ~ {a}.
e Three of these subgroups act as /a — —+/a, Vb = —v/b, /¢ — \/c, where {a,b,c} =
{2,5,7}. The corresponding fields are Q(+/c 4+ vab).
e One order-2 subgroup flips the signs of all three generators. The corresponding field
is Q(v10 + V14) = Q(v10 + v/35) = Q(v14 + v/35).
The are also seven subgroups of order 4. These correspond to quadratic extensions
Q(y/m) where m € {2,5,7,10, 14, 35,70}.
Finally, the subgroup of the Galois group of order 8 corresponds to the field @ = Q(1).

For example, R, C, Q(v/2,vV5,V7,7),....



6. Set F = Q(\/7), and set K1 = F(\/2+/7) and Ky = F(\/2 — /7). Let E = K1 K, be
the composite field.

(a) Which of the following extensions are Galois?

QCF7 QCKh QCK27 QCEa
FCcK, FCKy, FCE K CE Ky CE

(b) For the extensions in part (a) which are Galois, what is the Galois group?

We remark that K1 C R whereas Ko ¢ R, and so K1 # Ks. On the other hand, K1 = Ky
are isomorphic (lifting the automorphism /7 +— —/7 of F).

The extensions Q C F, F C K1, F C Ky, K, C E, Ky C E are all quadratic and hence Galois
with Galois group Z/2.

The extension F' C E is splitting and hence Galois (since we are in characteristic 0). Its

degree is 4, and it contains the inequivalent subfields K7i, Ko, and so the Galois group is
V = (Z/2)? (and not Z/4).

The extensions Q C K1, Ko are not Galois. Indeed, the automorphism of F' does not extend

to an automorphism of either K; or K5 (but rather to an isomorphism between them) and

so K, Ko are not splitting.

The extension Q C FE is Galois, since F is the splitting field of the minimal polynomial of
2 + /7. The Galois group is an order-8 subgroup of Sy, and hence dihedral of order 8.



7. Find the Galois groups of the following polynomials over ) and over R:

(a) 23+ 322+ 2z — 1.
Hint: The discriminant is —23.
(b) 2* —42® 4z + 1.
Hint: The discriminant is 1957 and the resolvent cubic is 3 + 422 — 42 + 15.

(a) This polynomial is irreducible over Q by the rational root test: if it were reducible, then
one factor would be linear, and so it would have a rational, hence integral, root, which
would necessarily divide 1; but neither +1 is a root. The discriminant is not a square,
so the Galois group is 5.

Over R, the discriminant is not a square but the polynomial does have a root. So there
is a unique real root, the splitting field is C, and the Galois group is Z/2.

(b) This polynomial is irreducible over Q. To see this, note first that it does not have a
rational root (which would necessarily be +1). Suppose that it factored as a product of
quadratics. Then it would factor over Z, and hence factor into a product of quadratics
over Z/3 = F3. But working mod 3 we have

st =4t +r+1=(z4+1)(@*—2z+1) (mod 3)

and 23 — z + 1 is irreducible over IF3 (since it doesn’t have a root). But factorization of
polynomials over 3 (or any field) is unique.

The discriminant 1957 = 19 x 103 is not a square in Q. Furthermore, the resolvent cubic
is irreducible over Q: if it were reducible, it would have a root which would divide 15
and be divisible by 3 (since the cubic is 2% 4+ 2% — 2 (mod 3)), and direct checking rules
out £3,+15. So the Galois group over Q is Sy.

Over R, this quartic polynomial factors completely. Indeed, it takes the values

z |at =422 +2x+1
—00 +00

-1 -3

0 1

1 —1
+00 +00

and so must have at least four real roots. So the Galois group is trivial.



8. (a)
(b)
(c)
(d)

(a,b)

()

(d)

What does it mean for a field extension F' C E to be separable?
What does it mean for a field extension F' C E to be purely inseparable?
Give an example of a nontrivial field extension which is purely inseparable.

Give an example of a nontrivial field extension which is neither separable
nor purely inseparable.

A polynomial f(z) € F[z] is separable if it has no repeated roots (in any field extension),

or equivalently if f(z) and the derivative f’(z) = % are relatively prime. It is purely

inseparable if it has only one root in any field extension, i.e. if after a field extension
fx)=(z—a)"

A field extension F' C FE is separable, resp. purely inseparable, if it is algebraic and
furthermore for every @ € E, the minimal polynomial of o over F' is separable, resp.
purely inseparable.

An example of a nontrivial purely inseparable extension is to start with a field K of
characteristic p, set F' = K(t), the field of Laurent polynomials in one variable, and set
E = F(1).

An example which is neither separable nor purely inseparable, take F' = K (t) as in part
(c), but take E = F( §/t) where m is divisible by p but not a power of p.



9. (a)

(b)
(c)

(a)

Suppose that F' is field. Prove that if G C F'* is a finite subgroup, then G is
cyclic. Conclude that if F' is finite, then F* is cyclic.

Describe the group C*.

Prove that for each prime p and each positive integer n, there exists a field
IF,» of order p", and that it is unique up to isomorphism.

Suppose for contradiction that G is not cyclic. Because G is abelian, if it is finite then it
factors into a product of cyclic groups; if it is not cyclic, then G must contain a subgroup
isomorphic to (Z/p)? for some prime p. But then the polynomial 2P — 1 would have at
least p? roots in F.

This (infinite!) group is isomorphic to R x S, where S' = U(1) is the circle group. The
isomorphism is given by polar coordinates: (r,#) — rxe. There are plenty of subgroups
which cannot be generated by a single generator, for example the subgroup consisting
of complex numbers of the form 2% x ¢® for a,b € Z. (This subgroup is isomorphic to
7. That it is not a quotient of Z? follows immediately from the irrationality of 7.)
Suppose that there is such a field. Then IF;n is cyclic of order N = p™ — 1. Then this
field completely splits the polynomial 2V — 1 € Fplz]. So if Fyn exists, then it is said
splitting field, confirming uniqueness.

It suffices to show that the splitting field of 2V — 1, or equivalently of 2" — x, contains
precisely p” elements. Equivalently, it suffices to show that the solutions to 2" = z are a
field. They are obviously closed under multiplication, and closure under addition follows
from the Frosh’s Dream — the statement that, in characteristic p, (z + y)? = aP + yP.
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