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There are 9 questions on this exam. The pass mark is 60%.

• The PhD comprehensive exam consists of all 9 questions.

• The Math 5055 final exam consists of the final 6 questions.

Please indicate which exam you are taking.
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1. Let G be a group.

(a) Give the definition of subgroup of G.

(b) Prove that if G is finite, then any nonempty subset of G which is closed under
multiplication is a subgroup.

(c) Give an example to show that the conclusion in part (b) can fail if G is
infinite.

(a) [7pts] A subset H ⊂ G is a subgroup if it is a group for the same operation. In other
words, it must be closed under multiplication (if g, h ∈ H, then gh ∈ H) and contain
the identity element and inverses (1 ∈ H and if h ∈ H then h−1 ∈ H). Note that
associativity is inherited from the ambient group. Containing the identity follows from
the other two for nonempty subsets.

(b) [8pts] Suppose H ⊂ G is nonempty and closed under multiplication. We must show
that if h ∈ H, then so also h−1 ∈ H (as then closure for multiplication implies that
1 = hh−1 ∈ H). Since G is finite, every g ∈ G solves g#G = 1. Thus h−1 = h#G−1 =
h · h · · · · · h, which is contained in H by the closure assumptions.

(c) [5pts] For example, take G = (Z,+), the group of integers under addition, and H =
N ⊂ G. (There are many examples.)
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2. Let G be a finite group and p a prime. Suppose that S, T ⊂ G are subgroups.

(a) What does it mean for S to be a p-subgroup? What does it mean for S to be
a Sylow p-subgroup?

(b) Suppose that S is a Sylow p-subgroup and T is a p-subgroup. What can you
say about the relationship between S and T?

(c) Suppose that G = S6 is the symmetric group on 6 elements. How many Sylow
3-subgroups are there?

(d) Suppose that G has order pk ×m with k ≥ 1 and m < p. Prove that G is not
simple.

(a) [5pts] A p-subgroup is a subgroup whose order is a power of p. It is Sylow if its index
is coprime to p.

(b) [5pts] All Sylow p-subgroups are conjugate, and all p-subgroups can be extended to
Sylow p-subgroups. Thus T is conjugate to a subgroup of S.

(c) [5pts] An example of a Sylow 3-subgroup is 〈(123), (456)〉, and every other Sylow 3-
subgroup is conjugate to this one. Thus the subgroup is uniquely determined by a choice
of partition of {1, 2, 3, 4, 5, 6} into two subsets each of size three. There are 1

2

(6
3

)
= 10

choices.

(d) [5pts] The number of Sylow p-subgroups is 1 (mod p) and divides m. If m < p, then
the only such number is 1. So there is a unique p-subgroup, and so that p-subgroup is
normal.
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3. (a) How many (isomorphism classes of) abelian groups of order 300 are there?
Justify your answer.

(b) How many (isomorphism classes of) groups of order 10 are there? Justify
your answer.

(a) [10pts] The fundamental theorem of abelian groups says that every abelian group fac-
tors, uniquely up to isomorphism, into a product of cyclic groups of prime-power order.
Since 300 = 22 · 3 · 52, the factorizations are (Z2

2 or Z4) × (Z3) × (Z2
5 or Z25). So there

are 2× 1× 2 = 4 choices.

(b) [10pts] There are two such groups: the cyclic group C10 = Z10 and the dihedral group
D10. To prove this, let G be a group of order 10. By Cauchy’s theorem, G contains
an element g of order 5. The cyclic subgroup 〈g〉 ⊂ G has order 5 and hence index 2
and so is normal. (Subgroups of index 2 are always normal.) The quotient group G/〈g〉
has order 2. Since G itself contains an element h of order 2 (by Cauchy’s theorem), G
arises as a semidirect product 〈g〉 o 〈ho — in other words, having chosen g, h, we can
enumerate the elements of G as gihj for i ∈ Z5 and j ∈ Z2. The group law on G is fully
determined by the value of hg = gih. Then g 7→ gi is an automorphism of 〈g〉 ∼= Z5 of
order 2. There are two such automorphisms: the trivial one (i = 1) and the nontrivial
one (i = 4) [for example, the automorphism σ : g 7→ g2 does not have order 2, because
σ(σ(g)) = σ(g2) = g4 6= g].
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4. (a) Let E be a field, and let G ⊂ Aut(E) be a set of field automorphisms of E.
What does it mean to say that an element of E is a G-fixed point?

(b) Let EG ⊂ E denote the set of G-fixed points. Prove that EG ⊂ E is an
extension of fields.

(c) Give an example of an extension F ⊂ E of fields such that F 6= EG for any set
G ⊂ Aut(E) of field automorphisms.

(a) [7pts] By definition, the set of fixed points is EG = {α ∈ E|gα = α ∀g ∈ G}.
(b) [8pts] The content is to prove that EG is a subfield of E. Certainly 0, 1 ∈ EG since they

are fixed by all automorphisms. Suppose α, β ∈ EG (and assume β 6= 0 if necessary).
Then for every g ∈ G, and for each of the field operations ? ∈ {+,−,×,÷}, we have
g(α ? β) = gα ? gβ = α ? β. It follows that α ? β ∈ EG, and so EG is a subfield of E.
(The associativity, commutativity, and distributivity axioms are inherited from E.)

(c) [5pts] For example, Q ⊂ Q( 3
√

2) and Q ⊂ R both work, since the fields Q( 3
√

2) and
R both have no nontrivial automorphisms. To compute AutQ( 3

√
2), note that any

automorphism is determined by its action on 3
√

2; its image must be a root of x3 − 2.
But this is the unique real root, and Q( 3

√
2) ⊂ R. To compute AutR, note that a

number in R is positive if and only if it is a square, and so all automorphisms preserve
the ordering on R; but a real number is determined by the sets of rational numbers
which are less than and greater than it.
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5. Let θ =
»

3 +
√

11.

(a) Find the minimum polynomial f of θ over Q.

(b) Let K be the splitting field of f . Compute Gal(K/Q).

(c) Find all intermediate subfields of Q ⊂ Q(θ).

(d) Give an example of a transcendental extension of Q(θ).

(a) [3pts] Note that θ2 = 3 +
√

11, and so (θ2 − 3)2 = 11, or in other words θ is a root of
f(x) = x4− 6x2− 2. This polynomial is irreducible by Eisenstein’s criterion with p = 2.

(b) [8pts] Note that Q(θ) ⊂ R but θ′ =
»

3−
√

11 is an imaginary root of f . It follows that
K ) Q(θ). We know that Q(θ) has degree 4 over Q and it is not hard to see that K has
degree at most 2 over Q(θ). So [K : Q] = 8. By the irreducibility of f , we can already
conclude that Gal(K/Q) = D8, since it is an order-8 subgroup of S4.

(c) [7pts] Other than Q and Q(θ), the intermediate subfields of Q(θ) are quadratic exten-
sions of Q (since [Q(θ) : Q] = 4). We can see one option immediately: Q(

√
11) is a

subfield, since θ2− 3 =
√

11 ∈ Q(θ). We claim that it is the only one. There are various
ways to show this. A slow method is to compute the full lattice of subfields of K (which
is not what the question asks!). A quick method is to argue as follows. Suppose that
there were another quadratic extension Q(

√
a) ⊂ Q(θ). Then Q(

√
a,
√

11) would have
degree 4 over Q and be a subfield of Q(θ) and hence equal to Q(θ). But Q ⊂ Q(

√
a,
√

11)
is Galois whereas Q ⊂ Q(θ) is not.

(d) [2pts] E.g. Q(θ) ⊂ R.
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6. Let ζ9 be a primitive 9th root of unity.

(a) Find the minimum polynomial f of ζ9 over Q.

(b) Prove that Q ⊂ Q(ζ9) is Galois. What is its Galois group?

(c) Find all intermediate subfields of Q ⊂ Q(ζ9). Describe these fields as simple
extensions over Q, i.e. give a single generator for each intermediate extension.

(a) [7pts] ζ9 is a root of x9 − 1, but that’s not irreducible. Indeed, the 9th roots of unity
are ζi9 for i = Z9, but only the i ∈ Z×9 = {1, 2, 4, 5, 6, 7} are primitive. The other three
values ζ39 = ζ3, ζ

6
9 = ζ−13 , and ζ99 = 1 are roots of x3 − 1. So the minimum polynomial is

f(x) =
∏

i∈Z×
9

(x− ζi9) =
x9 − 1

x3 − 1
= x6 + x3 + 1.

(b) [5pts] The other roots of f are powers of ζ9, and so Q(ζ9) is the splitting field of f over
Q. Since f is separable (it has no repeated roots), Q ⊂ Q(ζ9) is Galois. The Galois
group is the copy of Z×9 , where i ∈ Z×9 acts by ζ9 7→ ζi9. This Galois group is abelian of
order 6 and hence isomorphic to Z6

∼= Z2 ×Z3.

(c) [8pts] The subfields are indexed by the subgroups of Z×9
∼= Z6. The latter description

tells us to look for (the two improper subgroups and) exactly two proper subgroups, one
of order 2 and the other of order 3. Thus, other than Q and Q(ζ9), we are looking for
two subfields.

One is Q(ζ3), where ζ3 = ζ39 = −1+
√
−3

2 is a primitive cube root of unity. The extension
Q ⊂ Q(ζ3) is quadratic, and so this corresponds to the subgroup of Z6 of order 3.

Another is Q(ζ9) ∩ R = Q(ζ9 + ζ−19 ). This is a different subfield since ζ3 6∈ R. Note
that ζ9 + ζ−19 = 2 cos 20◦ is famously algebraic of degree 3 over Q, and so this extension
corresponds to the subgroup of Z6 of order 2. (Indeed, that subgroup must consist of
the identity and complex conjugation, and so the corresponding field must be Q(ζ9)∩R.
The only thing to check is that ξ := ζ9 +ζ−19 6∈ Q. Well, ξ3 = ζ39 +ζ−39 +3(ζ9 +ζ−19 ). But
ζ39 = ζ3, and ζ3 + ζ−13 = −1. So ξ3 = −1 + 3ξ, which is to say ξ is a root of x3 − 3x+ 1,
which is irreducible by the rational root test.)
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7. Let F be a field of characteristic p > 0.

(a) What is the Frobenius endomorphism of F?

(b) Prove that the Frobenius endomorphism is an automorphism if and only if
every finite extension F ⊂ E is separable.

(c) Why does this imply that every extension of finite fields is separable?

(d) Prove that if F is a finite field, then Aut(F ) is generated by the Frobenius
endomorphism.

(a) [3pts] The Frobenius endomorphism is the map φ : a 7→ ap. It is manifestly multi-
plicative, and it is additive by the Frosh’s Dream, and so it is a field endomorphism.
We remark that field endomorphisms (indeed, field homomorphisms) are automatically
injections.

(b) [8pts] As remarked already, φ is automatically an injection, and so it is an automorphism
if and only if it is a surjection.

If φ is not surjective, pick b not in its image. Let E be the splitting field of xp − b. This
polynomial is purely inseparable — in E, all roots are equal, due for example to the
injectivity of φ — and not F , and so F ⊂ E is an inseparable extension.

Suppose that φ is surjective, and let F ⊂ E be a finite extension. Given θ ∈ E, let f(x)
be its minimal polynomial. Since f is irreducible, if it were inseparable it would have to
be of the form f(x) =

∑
i ai(x

p)i. Since φ is surjective, each ai = bpi for some bi. Then
f(x) = (

∑
i bix

i)p, violating irreducibility.

(c) [2pts] Any injection from a finite set to itself is a bijection.

(d) [7pts] If F is a finite field, then it is a finite extension of Fp for some positive prime p;
let n = [F : Fp] be its index. Part of the fundamental theorem of Galois theory says
that Aut(F ) has order at most n, with equality when Fp ⊂ F is Galois. So it suffices to
show that the Frobenius automorphism φ has order at least n when acting on F .

Let k > 0. The fixed points of φk are the roots of xp
k −x, of which there are at most pk.

If k < n, then pk < pn, and so not every element is fixed by φk. Thus φk 6= id if k < n.
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8. Find the Galois groups of the following polynomials over Q and over R:

(a) x3 − x2 − 2x+ 1.
Hint: The discriminant is 49.

(b) x4 + 8x+ 12.
Hint: The discriminant is 331776 = 5762 and the resolvent cubic is x3−48x−64.

(a) [10pts]

Over Q: We first check that x3 − x2 − 2x + 1 is irreducible. Since it is a cubic, it is
irreducible as soon as it has no roots; by the rational root test, the rational roots
must be factors of 1; neither ±1 is a root. Thus the Galois group over Q is a
transitive subgroup of S3. Since the discriminant is a square, the Galois group is a
subgroup of A3; and hence it is A3.

Over R: Since the discriminant is a square, the Galois group is a subgroup of A3. It is
not transitive since the cubic very definitely contains at least one real root. Thus
the Galois group is trivial. (You can also show directly that this polynomial has
three real roots, and so its splitting field over R is R.)

(b) [10pts] Set f(x) := x4 + 8x+ 12.

Over Q: We first check that f is irreducible. It is monic, and so any rational roots are
integers; but if x is odd, then so is f(x), whereas if x is even, then f(x) ∼= 4 (mod 8).
So f does not have a linear factor. Can it have a quadratic factor? Reducing mod 5
gives f(x) = x4 + 3x+ 2 (mod 5), and f(−1) = 1− 3 + 2 = 3 (mod 5). This means
we can factor out a linear factor mod 5:

f(x) = (x+ 1)(x3 − x2 + x+ 2) (mod 5).

If f factored into a product of quadratics, then that factorization would descend
mod 5. Since factorization in F5[x] is unique, this would force x3 − x2 + x + 2 to
have a quadratic factor mod 5, and hence to have a root mod 5. Checking all values
mod 5 shows that it doesn’t.
Thus the Galois group is a transitive subgroup of S4, and in fact of A4 since the
discriminant is a square. It remains to decide if the Galois group is A4 or V = Z2

2.
This is decided by the resolvent cubic g(x) = x3 − 48x − 64: either g completely
factors and the Galois group of f is V , or g is irreducible and the Galois group is
A4. Which is it? Since g is cubic and monic, we just need to check if its roots are
integers. Here is a fast check (there are slower methods): Note that g′(x) = 3x2−48
has roots at ±4, so if there are three real roots, then one of them is between 4 and
-4; but g takes the values 64, 24,−27,−64, at x = −4,−3,−2,−1, and so has a real
but non integer root in this region; so g does not completely factor and we decided
already that either it completely factored or it was irreducible. As a result, g is
irreducible and the Galois group of f is A4.

Over R: The derivative of f is f ′(x) = 4x3 + 8, which has a unique real root (at
x = − 3

√
2). So f cannot have four real roots, and its splitting field over R must be

C. The Galois group is thus Z/2.
Note: f(− 3

√
2) = 2 3

√
2− 8 3

√
2 + 12 = 12− 6 3

√
2 > 0, since 3

√
2 < 2. So f takes only

positive values, and so all roots are imaginary. In other words, f factors over R
as a product of two irreducible quadratics. Actually, this was forced by the Galois
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group together with the descriminant: since the discriminant is a square, the Galois
group is a subgroup of A4; but the only order-2 element of A4, up to conjugation,
is (12)(34).

10



9. (a) What does it mean for a finite group to be solvable? Why is the word
“solvable” used for this concept? What is it that can be “solved”?

(b) Let p be a prime. Prove that every finite p-group is solvable.

(c) Give an example of an irreducible polynomial over Q of degree 5 whose Galois
group is solvable. Give an example of an irreducible polynomial over Q of
degree 5 whose Galois group is not solvable.

(a) [8pts] A group G is solvable if it can be built as an iterated extension of abelian (or
equivalently of cyclic) groups. There are many equivalent conditions: for example, one
can declare the definition inductively by saying that G is solvable if it has an abelian
normal subgroup with solvable quotient; or, again inductively, if it has a solvable normal
subgroup with abelian quotient; or G is solvable if its derived series (the sequence
G,G′ = G(1) = [G,G], G(2) = (G(1))′, G(3) = (G(2))′, . . . ) is eventually trivial.

The name comes because a polynomial is solvable in radicals (in the sense that its roots
can be written in terms of the coefficients using just +,−,×,÷, n

√
−) if and only if its

Galois group is solvable.

(b) [7pts] A nontrivial p-group G always has a nontrivial centre Z(G), which is normal and
abelian, and the quotient G/Z(G) is solvable by induction on the order of G.

(c) [5pts] The polynomial x5−2 is irreducible and its roots are manifestly given by radicals.
(The splitting field is the degree-20 extension Q(ζ5,

5
√

2), and so the Galois group has
order 20; the Sylow 5-subgroup is thus normal and cyclic hence abelian, and the quotient
of order 4 is also abelian.)

The polynomial x5 − 100x+ 2 is irreducible by Eistenstein’s criterion and has 3 = 5− 2
real roots; since 5 is prime, the Galois group must be S5, which is not solvable. (Its
only normal subgroup is A5, which is in turn simple and nonabelian and hence not an
extension of abelian groups.)
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