If FCE is galois and algebraic, then splitting and
sequrable.

$$\int fCE is algebraic, splitting and sequrable then
galois.
WTS if $w \in E \setminus F$ then $\exists t \in Gal(E/F)$ at $t \cdot u \neq u$.
 $u \in E \setminus F$ so u is algebraic, let $p(x) \in F(\infty)$ its
minimal polynomical.
Observe since $u \notin F$, deg $(p) > 1$
Since E is splitting, p splits over E
Since E is separable, roots of p are all different.
 $\rightarrow \exists u' \in E$ also solving p
 t_{t}
So, look at $F \stackrel{C}{=} w = sectiond$ iso
 $C K(u') C E'$
So, we built $T: E \xrightarrow{} E = st T_{1F} = id$ but $T. u = u'$
 $fan 21$
 $U \not F$ is a finite field, then it has positive
characteristic.
 $Examples of finite fields$
 $F_{p} = ZI(p) p preme
 $F^{3} = \begin{cases} 0, 1, -1 \\ p \end{pmatrix} = -1$ is not a square
So $F_{3}(\sqrt{1}) = F^{2}(x)/(x^{2}+1)$ is not a field
 $On F_{5} = 1 = 2^{2}$ so $F_{5}(x)/(x^{2}+1)$ is not a field$$$

•

Given any unital commutative ring, I unital map

$$Z \longrightarrow R$$

 $Ku(Z \longrightarrow R) = (m)$
If R is a field then (m) is prime a 0
called therateristic
of the field chan(R)
If char(F) = 0 then $F \ni a$ "a rational field"
If char(F) = 0 then $F \ni a$ "a rational field"
If char(F) = 0 then $F \ni R$
 $Tim Exercise$
Ring homomorphism $Z \longrightarrow a$ is spic and monic not \cong
 $Z \longrightarrow ZP$ is spic not monic
 $a \in F$ are called prime subfield of F
Fp
Suit F be a finite field of order $q < \infty$.
Then $Z \notin F$ so char(F) = p, some positive prime
member.
And $F_P \subset F$ is finite field extension of deg $n < \infty$.
Must have $q = p^n$, a prime power.
Since F is a field, $F - For is a$ finite abelian group of
order $q = 1$.
Kvery finite abelian group is a product of cyclic groups.
If $Cn \times Cm$ cyclic group iff $(m, n) = 1$ (relatively prime)
A finite abelian group can fail to be cyclic iff it
contains a subgroup $\cong Cr \times Cr$ for r , a prime.
Can $F^* \supset Gr \times Cr$? No.

Because if
$$Gr^2 \subset F$$
, then F contains at least r^2
roots to $x^n - 1$. But if r prime then $r^2 > r$.
Then If F is a finite field, F^* is cyclic of order $q - 1$
for some $q = p^n$.
Corrollary $\exists n \in F$ such that $F = F_P(u)$. Namely pick u
any generator of cyclic group F^* .
The minimal polynomial of u has degree n .
Example $F3(\sqrt{-1})$
 $1+\sqrt{-1} \times \frac{\sqrt{-1}}{1}$
 $1+\sqrt{-1} \times \frac{\sqrt{-1}}{1}$
 $u^2 = 1 + \sqrt{-1}$ has order 8 in
 $F_3(\sqrt{-1})$
 $u^2 = 1 + 2\sqrt{-1} = -\sqrt{-1} = -\sqrt{-1} = -u+1$
 $gal(any field extension) \leq dig(field extension)$
urth equality for galois extension.

book at rudurable polynomial $f(x) = x^{q} - x \in F_{p}(x)$ $if x = 0, x^{q} = x$ $if x \neq 0, x \in F^{*} (qroup of order q-1), so x^{q-1} = 1$ and $x^{q} = x$ $\rightarrow f(x) = 0$ f(x) has dig = q so q distinct roots in F. So F is a splitting field of f over Fp and f is separable.

Splitting field unique up to ≅
 if #F = #F' < ∞ _> F ≅ F'
 So any two extensions of Fp of same degree are ≅
 _> false for Q!

SFq is fwell defined for any pover of q

2) Seperable splitting fields are Galois. if F is finite of order q, then $F_p \subset Fq$ is Galois. Its Galois group has order n where $q = p^n$.

3) Fg escists 1 the field of order q - the splitting field of x ? - x

4) If Fg C Fg' any inclusion of finite fields, thin Galois When is there an inclusion Fq CFq'? . No, if that don't match $\rightarrow q = p^n \text{ and } q = p^m$. No if mXn . Yes, if mlp

If $m \mid n$, then $x^{p^m} - x$ divides $x^{p^n} - x$ over \mathbb{Z} so also over F.

 $\frac{Finite fields of char = p}{F_p - F_p^2 - F_p^3 - F_p^4}$ This poset is a ropey of the poset of positive integers sorted by divisitility $\cong \mathbb{N}^{\infty}$

$$(\alpha + \beta)^{P} = \alpha^{P} + (\stackrel{P}{,}) \alpha^{P^{-1}} \beta + \dots + (\stackrel{P}{,}) \alpha^{P^{-1}} + \beta^{P}$$

div by p
= $\alpha^{P} + \beta^{P}$

Y is fulled homomorphism hence inclusion. If F is finite, Y is ≅.

Let F = Fq, $q = p^n$, then $\Psi^n IF = id IF$. On the other hand, if $\Psi^n IF = id IF$, that would solve $z^{p^n} - \infty$. So fisced points of Ψ^n roots of $z^{p^n} - \infty$, $\leq p^n$ of them. $\Psi^n IF \neq id IF$ if k < n

-> Gal (Fpr / Fp) is syclic group of order n generated by Fr iso y.

Fix prime p > 0. <u>Recall</u> For each p, $\exists!(up to iso)$ field Fp^n of order p^n . $\exists al(Fp^n/Fp)$ is syclic group of order n generated by Fr iso $Y: F \longrightarrow F$ $\approx \longmapsto \pi^p$

If $R \supseteq F_P$ is a commutative ring, then $(x+y)^P = x^P + y^P$ so $FR : R \longrightarrow R$ is a ring endomorphism.

What is the algraic closure of \overline{Fp} ? $Fp \in \overline{Fp}$ has to be algebraic so any element in \overline{Fp} lives in some $\overline{Fp^n} \subseteq \overline{Fp}$ and all $\overline{Fp^n}$ are in $\overline{Fp} = \overline{Fp^\infty}$

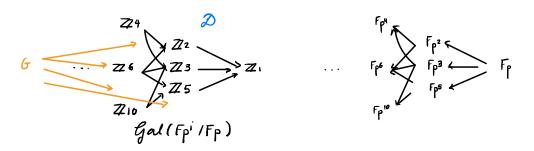
$$F_{P} = \begin{bmatrix} \frac{\mathbb{Z}/2}{F_{P}^{2}} & F_{P}^{2} \\ \hline \\ \mathbb{Z}/6} & \begin{bmatrix} \mathbb{Z}/3 \\ F_{P}^{2} \end{bmatrix}$$

Whatever Fp is, it is a splitting field. So, Fp C Fpⁿ C Fp We have Gal(Fp / Fp) _____ Gal(Fpⁿ / Fp) Z/n

Monover, Gal(Fp/Fp) --> Gal(Fp^{mn}/Fp) = Z/mn J standard map Gal(Fpⁿ/Fp) = Z/n

Any endomorphism of Fp is non-trivial on some finite esctensions.

We have a diagram of groups



The projective limit, projlim (D) = lim (D) is the group such that if 6 is any group that map to all entries in the diagram, making every thing commute thin we should have 6 _____ lim (D)

<u>Slogan</u> from (D) is the universal object with a map to the diagram from itself. Dual lim (D) is the inversal object with a map from the diagram to streff. lim (2) ____ 2 2 ____ (2) Dragram of all cyclic group $\lim_{n \to \infty} \left(\dots \longrightarrow \mathbb{Z}/mn \longrightarrow \mathbb{Z}n \longrightarrow \dots \right)$ = gal(Fp / Fp) $Fr: \mathbf{x} \longmapsto \mathbf{x}^{\mathsf{P}}$ Pick I = 10, git the diagram: $\cdots \longrightarrow \mathbb{Z}/\mathcal{X}^4 \longrightarrow \mathbb{Z}/\mathcal{X}^3 \longrightarrow \mathbb{Z}/\mathcal{X}^2 \longrightarrow \mathbb{Z}/\mathcal{X} \longrightarrow \mathbb{Z}/\mathcal{X}$ Î Î Î last 3 last 2 onus digits digits digits

So, any sequence of digits even if it goes a to the left, still has a residue mod l' Vn.

70	rki	infi	nite	sig	uunus	of	digits			
	• ••	аз	٩2	aı	a •					
+	• • •	bз	b 2	bı	٥d					
			+	aitbit carry						

Definition ZI is the set of infinite to the left sequences of digits in base l. Il called l-adic integers It is a ring because you can add a multiply from right to lift. durinal expansion Z C Z 1 as the wontally zero expansion. Now, 1 = -5. What durinal expansion base 5 of -2? -2= 3 mod 5 _2 = ... 4443 -2 = 23 mod 25 11 4 x 5 + 3 -2 = 4 × 52 + 4 × 5 + 3 mod 125 ... 4 4 4 <u>Slogan</u> No room to the left 3 for minus sign. + ... 0 0 0 0 0 0 0 0 0 2 0 What dicimal expansion base 5 of 1/2? 1 = 6 mod 5 __ 1/2 = 3 mod 5 -> 3 is the unique solution of 2x = 1 mod 5. 1/2 = 3 mod 5 1/2 = ... 2223 1/2 = 13 mod 25 $2 \times 5 + 3$ $2 \times 5^2 + 2 \times 5 + 3$ 1/2 = 63 mod 125 $1/2 = 2 \times 5^3 + 2 \times 5^2 + 2 \times 5 + 3$... 2223 ... 2223 + ... 2 2 2 3 × ... 0002 001

So, the finite length expansions are "dense" in Z.e. Projective limits are often thought of as topological objects.

$$\lim_{l \to \infty} (\dots \longrightarrow \mathbb{Z}/mn \longrightarrow \mathbb{Z}n \longrightarrow \dots) = \hat{\mathbb{Z}} = \text{gal}(\overline{F_{P}}/F_{P})$$

$$\prod_{\substack{l \in \text{prime}}} \mathbb{Z}/n$$

$$\mathbb{Z}/n = \prod_{\substack{l \in \mathbb{Z}/2^{n}}} \mathbb{Z}n$$

If
$$F \in E$$
 extension of finite fields, then Galois.
Fise $p > 0$ char.
Fuilds of char(p) have a distinguished endo
 $F^{T}: u \longmapsto u^{p}$ (inj)
In finite fuild case, Galois (F/FP) is cyclic = Z/dim F
Fn is \cong -Galois (E/E^P) = Z/dim ZP(F)
So Gal(E/F) = Z/ amunated by $F^{EF:FP}$

 $iypual elimint: \frac{f(t)}{g(t)} = f(q) \quad \text{are relatively prime in } F_{p}Et]$ $F_{n}\left(\frac{f(t)}{g(t)}\right) = F_{n}(a_{0} + a_{1}t + ... + a_{n}t^{n}) = a_{0} + a_{1}F_{n}(t) + ... + a_{n}F_{n}(t^{n})$ $= \frac{f(t^{p})}{g(t^{p})}$

<u>Remark</u> In this case Fr is not surjective t E Fp [t], t ≠ Fr (anything)

Set
$$s = t^{p} = Fn(t)$$

 $Fp(s) \subseteq Fp(t)$
 2 smage of Fn
 $K = Fp(s) \subseteq Fp(t) = L$
 $K \subseteq L$ is algebraic extension of degree p .
 $K \subseteq L$. What is the minimal polynomial of t in $K \equiv z]$?
 $t \longrightarrow \frac{zP - 5}{zricolucble}$ in $K \equiv z]$
Definition A polynomial $f(x) \in K \equiv z]$ is separable if
in some splitting field of f , f has no repeated roots.
This happens iff $g(d) (f, f') = 1$
 $2t finition A$ polynomial $f(x) \in K \equiv z]$ is purily insigninable
if in some splitting field of f , all roots of f are the
same.
This happens if $f(x) = (x - d)^{p}$
Remark f both separable and purily insignizable if it is
 $dimear$.
 $M = K \subseteq L$ an alg extension and $u \in L$, u is separable
 $f(u)$ so.
 $M = f(x)$ is ineducible
Thun ged $(f, f') = S = f' \neq 0$
 $0 = f' = 0$
 $[u + u \in V] = (u + U)^{2}$

 $[a_0 + a_1x + ... + a_nt^n]' = a_1 + 2a_2x + ... + pap^p$ is zero if $f_0(x) = f'(x^p)$. Set $K \subset L$, $u \in L$ alg. \longrightarrow u is superable or minimal poly of u is $f(x) = f(x^p)$ So $uo^p = u_1$.

Roots of f, are pth powers of roots of fo. After passing into a splitting field of fo, we find that f, also splits.

If f, is not purely inseparable - so is fo

If f, is purely inseparable ____ so is fo. f, has only I root, roots of fo are Tu.

If char = p then $(xe^{p} - 1) = (x - 1)^{p}$ so I has only one pth root so every element has one pth root.

Let $K \subseteq L$, $u \in L$ alg. \longrightarrow u is superable or $u = \sqrt[p]{F\pi u}$ and either $F\pi u$ is superable or repeat min poly of u is $g(u^p)$ where g is mon poly of $F\pi(u)$ So some u^{pK} is superable for some $k : F\pi^k(u)$. u is purely inseperable iff $F\pi(u)$ is purely inseperable iff $F\pi^2(u)$ is purely inseperable ...

If $K \subset L$, $u \in L$ alg, then u is purely inseperable over K iff after applying FT some # of times you stay in K.

<u>Corollary</u> L^{unsep} is a field.

Theorem (1) Lsep and Linsep are subfields

<u>Remark</u> If FCE is purily inseperable then Gal(E/F) is trivial.

Normal: KCL, UEL, min poly of u splits completely over K. If vireducible poly over K has root in L thin has all roots in L.

$$\begin{array}{c} \begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ \hline fan 28 & & & & \\ \hline fan 28 & & & & \\ \hline fan 28 & & & & \\ \hline fan 20 & spirable & \\ \hline fan 2$$

Example

• If all u_i 's are provedy inseperable over F then $\forall u \in E$ is. u_i is purely inseperable iff $Fr^N(u_i) \in F$ for large N. If all M's are purely inseparable over F, then $Fn^{N} E \subseteq F \qquad N >> 0$

If E = F(M,..., Mn) and all Mi's are superable then
VMEE is superable.
proof Let f minimal polynomial of M
Let MEE
F C F(M) C E C K = splitting field of Mi's
We proved that FCK is finite and Galois by counting
sizes of various Galois group.
And, every element of a Galois esctension is superable.

Seperable and of Galois

Because these subfields are <u>stable</u> we get a left-escact sequence: V stable FCKCE

<u>Recall</u>: f sequence of groups $I \longrightarrow N \longrightarrow G \longrightarrow K$ is left - exact, if $N \longrightarrow G$ is injective and $\Im m N = Kor(G \longrightarrow K)$