
Math 5055: Advanced Algebra II

Assignment 1

Solutions

1. Show that x3+9x+6 is irreducible over Q. Let θ be a root, and compute (1+θ)−1 ∈
Q[θ].

A cubic is irreducible if and only if it has no roots, and a monic polynomial over Z has a
root over Q if and only if it has a root over Z. So it suffices to check that x3 + 9x + 6 has
no integral roots. Well, if |x| ≥ 4 then |x3| > 3x2 + x2/2 > |9x| + 8, so there x cannot be a
root of x3 + 9x + 6. This leaves just x ∈ {±3,±2,±1, 0} to check, and indeed there are no
integral roots.

Note that 1, θ, θ2 is a Q-basis for Q[θ], since deg θ = 3. So we wish to find rational numbers
a, b, c such that 1 = (1 + θ)(a+ bθ+ cθ2) = a+ (a+ b)θ+ (b+ c)θ2 + cθ3. Since θ3 = −9θ− 6,
the RHS simplifies to (a− 6c) + (a+ b− 9c)θ+ (b+ c)θ2. So b = −c and a = 10c and 1 = 4c.

Thus we find (1 + θ)−1 = 5
2 −

1
4θ + 1

4θ
2 .

2. Show that x3+x+1 is irreducible over F2. Let θ be a root, and compute its powers
in F2[θ].

A cubic is irreducible if and only if it has no roots. It suffices to check just x = 0, 1, and:
03 + 0 + 1 = 1 and 13 + 1 + 1 = 1 in F2.

In F2[θ], we have θ3 = θ + 1. Thus the powers of θ are:

1, θ, θ2, θ + 1, θ2 + θ, θ2 + θ + 1, θ2 + 1, 1, . . .

whence it repeats. In other words, θ8 = 1, and all the nonzero elements of F2[θ] are powers
of θ.

3. Let K1 and K2 be two finite extensions of a field F, both subextensions of a
common extension E; recall that K1K2 ⊂ E is the subextension that they generate.
Show that the tensor product algebra K1⊗FK2 is a field if and only if [K1K2 : F] =
[K1 : F][K2 : F]. Conclude that this happens in particular whenever [K1 : F] and
[K2 : F] are coprime.

Using commutativity, the linear map µ : K1 ⊗ K2 → K1K2 defined on pure tensors by
µ(a1⊗a2) = a1a2 is easily seen to be a surjective ring homomorphism. If K1⊗FK2 is a field,
then µ must be injective and hence an isomorphism, and if K1 ⊗F K2 is not a field, then µ
must have kernel. On the other hand, since µ is surjective, it does or does not have a kernel
depending on whether dimF(K1 ⊗F K2) is equal to or greater than dimF(K1K2). But tensor
products multiply dimensions.

Since [K1 : F] and [K2 : F] both divide [K1K2 : F], if [K1 : F] and [K2 : F] are coprime, then
their product divides [K1K2 : F], which on the other hand is not more than their product.
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4. In the field F(x) of rational functions, let u = x3/(x+ 1), and consider the subfield
F(u) ⊂ F(x). Compute the degree of this field extension.

Clearing denominators, we find that x3−ux−u = 0. In other words, x solves the polynomial
f(x) = x3 − ux − u ∈ F(u)[x]. We claim that this f(x) is the minimal polynomial of x over
F(u), in which case the extension F(u) ⊂ F(x) has degree 3. This is equivalent to claiming
that f(x) ∈ F(u)[x] is irreducible. Since f(x) is cubic, to show that it is irreducible, it suffices

to check that it has no roots. Suppose for contradiction that f(v) = 0 where v = a(u)
b(u) ∈ F(u)

and a(u), b(u) ∈ F[u] are relatively prime. Clearing denominators would give

a3 − uab2 − ub3 = 0.

Thus any prime factor of b is also a prime factor of a3 and hence of a, and conversely any
prime factor of a is also a prime factor of ub3 and hence of either u or b. Since a and b are
assumed relatively prime, we see that b = 1 and a = um for some m ∈ N. But um is not a
root of f .

5. A field F is formally real if −1 is not a sum of squares in F. Suppose that F is
formally real and that f(x) ∈ F[x] is irreducible of odd degree, and pick a root α
of f(x). Show that F(α) is formally real.

Let deg f = degα = n. Suppose that F(α) is not formally real, i.e. that −1 = a2 + b2 + . . . is
a sum of squares in F(α). What is an element a ∈ F(α)? It is a(α) for a unique polynomial
a(x) ∈ F(x) of degree deg a < n. And the equation −1 = a2 + b2 + . . . is an equation of
polynomials mod f(x). In other words

a(x)2 + b(x)2 + · · · = −1 mod f(x)

or in other words
a(x)2 + b(x)2 + · · · = −1 + f(x)g(x)

for some g(x) ∈ F[x]. Now count degrees: a, b, . . . each have degree ≤ n− 1, and so the LHS
has degree ≤ 2n− 2. But the RHS has degree n+ deg(g), and so deg(g) ≤ n− 2. Moreover,
the LHS is even, and so deg f and deg g have the same parity.

But the same equation shows that −1 is a sum of squares in F[x]/(g(x)), and hence in any
field quotient thereof.

We’d like to claim that this leads to an “infinite descent” contradiction, in which we keep
reducing the degree. But there is a problem. Specifically, what if deg g = 0? Then
F[x]/(g(x)) = 0 is the zero ring, and has no field quotients.

Ruling this out is where we use the assumption that deg f = n is odd. Then deg g is also
odd, and so g(x) definitely has an irreducible factor of odd degree. So now we see the infinite
descent: start with f = f0, find g, and then choose f1 to be an odd-degree irreducible factor
of g; then deg f1 < deg f0 and both are odd, and arrive at the desired contradiction.

6. Let E be a finite extension of F. Show that E is a splitting field (of some set
of polynomials) over F if and only if every irreducible polynomial over F which
admits a root in E splits completely in E.

Let S ⊂ F[x] be the set of polyonials for which E is declared the splitting field. (If this set is
finite, then we may as well work with the polynomial S(x) =

∏
s∈S s(x).)
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Let f(x) ∈ F[x] be irreducible, and α ∈ E a root of f . In other words, we have field extensions

F ⊂ F[α] ⊂ E

where F[α] ∼= F[x]/(f(x)). Note that the extension F[α] ⊂ E is again a splitting field for the
same set S, now thought of as a set of polynomials in F[α][x]. Let K denote the splitting
field for S ∪ {f}. In other words, we have

E ⊂ K,

and f splits completely in K.

Now pick some other root β ∈ K of f , and inspect the subfield F[β] ⊂ K. There is a canonical
isomorphism F[α] ∼= F[β], namely the unique one which is the identity on F and takes α 7→ β.
Let E′ be the splitting field of S over F[β].

Then, from the theorem, we can choose an isomorphism E ∼= E′ taking α 7→ β and acting as
the identity on F. In particular, [E : F] = [E′ : F].

On the other hand, E is a subfield of E′. Indeed, E′ = E[β] (since E is generated by the
roots of the elements of S whereas E′ is generated by those roots together with β). Since we
assumed that the index [E : F] is finite, we must have E = E′.

But this means in particular that β ∈ E, which is what we wanted to prove.
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