Math 5055: Advanced Algebra II

Assignment 1

due January 24, 2022

Homework should be submitted as a single PDF attachment to theojf@dal.ca.

- 1. Show that $x^3 + 9x + 6$ is irreducible over Q. Let θ be a root, and compute $(1 + \theta)^{-1} \in \mathbb{Q}[\theta]$.
- 2. Show that $x^3 + x + 1$ is irreducible over \mathbb{F}_2 . Let θ be a root, and compute its powers in $\mathbb{F}_2[\theta]$.
- 3. Let \mathbb{K}_1 and \mathbb{K}_2 be two finite extensions of a field \mathbb{F} , both subextensions of a common extension \mathbb{E} ; recall that $\mathbb{K}_1\mathbb{K}_2 \subset \mathbb{E}$ is the subextension that they generate. Show that the tensor product algebra $\mathbb{K}_1 \otimes_{\mathbb{F}} \mathbb{K}_2$ is a field if and only if $[\mathbb{K}_1\mathbb{K}_2 : \mathbb{F}] = [\mathbb{K}_1 : \mathbb{F}][\mathbb{K}_2 : \mathbb{F}]$. Conclude that this happens in particular whenever $[\mathbb{K}_1 : \mathbb{F}]$ and $[\mathbb{K}_2 : \mathbb{F}]$ are coprime.
- 4. In the field $\mathbb{F}(x)$ of rational functions, let $u = x^3/(x+1)$, and consider the subfield $\mathbb{F}(u) \subset \mathbb{F}(x)$. Compute the degree of this field extension.

Hint: $\mathbb{F}(x) = \mathbb{F}(u)(x)$. Show that x is algebraic over $\mathbb{F}(u)$, and find its minimal polynomial.

5. A field \mathbb{F} is formally real if -1 is not a sum of squares in \mathbb{F} . Suppose that \mathbb{F} is formally real and that $f(x) \in \mathbb{F}[x]$ is irreducible of odd degree, and pick a root α of f(x). Show that $\mathbb{F}(\alpha)$ is formally real.

Hint: Consider a counterexample of minimal degree. Show that there exists g(x) of odd degree $\langle \deg(f)$ such that -1 + f(x)g(x) is a sum of squares in $\mathbb{F}[x]$. Show that g(x) would give a new counterexample, violating the minimality of f.

6. Let \mathbb{E} be a finite extension of \mathbb{F} . Show that \mathbb{E} is a splitting field (of some set of polynomials) over \mathbb{F} if and only if every irreducible polynomial over \mathbb{F} which admits a root in \mathbb{E} splits completely in \mathbb{E} .

Hint: Use that if $\phi : \mathbb{F} \xrightarrow{\sim} \mathbb{F}'$ is a field isomorphism, and $\mathbb{F} \subset \mathbb{E}$ and $\mathbb{F}' \subset \mathbb{E}'$ are splitting fields for "the same" polynomials (i.e. corresponding via ϕ), then ϕ extends to an isomorphism $\mathbb{E} \xrightarrow{\sim} \mathbb{E}'$.