
Math 5055: Advanced Algebra II

Assignment 2

Solutions

1. Let E be the splitting field over Q of (x3−2)(x2−3). Compute Gal(E/Q), and write
down the complete Galois correspondence: list all the subfields of E and all the
subgroups of Gal(E/Q) and how they match.

Let us look at the two factors:

• The splitting field of x2 − 3 is Q(
√

3), with Galois group Gal(Q(
√

3)/Q) ∼= S2 ∼= Z/2
acting by

√
3 7→ −

√
3. (We will write it as S2 to emphasize that it is acting as the

symmetric group on the two roots of x2 − 3.)

• The splitting field of x3 − 2 is F := Q( 3
√

2, ζ) where ζ = exp(2πi/3) = 1
2

Ä
1 +
√
−3) is a

root of x2 +x+1. Indeed, the roots of x3−2 are 3
√

2, ζ 3
√

2, and ζ2 3
√

2. The Galois group
is Gal(F/Q) = S3, the symmetric group on three elements (specifically: the symmetric
group on the three roots of x3 − 2). It can be generated by the order-2 automorphism
sending ζ 7→ −ζ while fixing 3

√
2 and the order-3 automorphism which fixes ζ but sends

3
√

2 7→ ζ 3
√

2.

These two subfields intersect trivially. On the other hand, E = F(
√

3) = Q(
√

3)( 3
√

2, ζ).
This lets us quickly compute that Gal(E/F) = S2 and Gal(E/Q(

√
3)) = S3. The short

exact sequences 1 → Gal(E/F) → Gal(E/Q) → Gal(F/Q) → 1 and 1 → Gal(E/Q(
√

3)) →
Gal(E/Q)→ Gal(Q(

√
3)/Q)→ 1 together then imply:

G ∼= S2 × S3.

The S2 factor exchanges ±
√

3 while fixing 3
√

2 and ζ, whereas the S3 factors fixes ±
√

3 and
permutes the three roots of x3 − 2. Indeed, each SES gives a splitting of the other one. One
can also see the isomorphism G ∼= S2×S3 “directly” by inspecting the permutation action of
G on the five-element set {

√
3,−
√

3, 3
√

2, ζ 3
√

2, ζ2 3
√

2}.
For future reference, we will write σ ∈ S2 ⊂ G for the nontrivial element of the S2 factor.
We’ll write ρ ∈ S3 ⊂ G for the 3-cycle 3

√
2 7→ ζ 3

√
2 7→ ζ2 3

√
2, and τ ⊂ G for the 2-cycle

ζ 3
√

2↔ ζ2 3
√

2.

We now must enumerate the subgroups H ⊂ G, and compute the fields EH .

Suppose first that H 3 σ. Then, for a generic permutation g ∈ S3, σg ∈ H if and only
if g ∈ H. Thus the subgroups H ⊂ G containing σ are precisely the groups of the form
H = S2 × H ′ for some subgroup H ′ ⊂ S3. There are six such groups H ′: the trivial group
(1); the whole group (S3); three groups of order two (〈τ〉, 〈ρτ〉, and 〈ρ2τ〉); and one group of
order three (〈ρ〉). The corresponding fields are:

ES2×S3 = Q, ES2×1 = F = Q[
3
√

2, ζ], ES2×〈ρ〉 = Q[ζ] = Q[
√
−3],

ES2×〈τ〉 = Q[
3
√

2], ES2×〈ρτ〉 = Q[ζ2
3
√

2], ES2×〈ρ2τ〉 = Q[ζ
3
√

2].
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Note that the three fields on the second row are isomorphic, reflecting that they correspond
to conjugate groups. They are different as subfields of E (subgroups of G).

We must now enumerate the subgroups H ⊂ G such that H 63 σ. Given such a subgroup,
consider the composition H ⊂ G → S3, where second map is the natural projection. This
composition will be an isomorphism onto its image. In other words, and such H does select
a subgroup H ′ ⊂ S3, and we have already enumerated those subgroups.

Going in the other direction: given a subgroup H ′ ⊂ S3, which are the subgroups H ⊂ G
that live over it? The answer is the following: H ⊂ G will map isomorphically to H ′ exactly
when H = {(φ(g), g) : g ∈ H ′} ⊂ S2 × S3 with φ some fixed homomorphism H → S2.

Inspecting our six subgroups H ′, we see that two of them (the subgroups of order one and
three) have only the trivial homomorphism to S2, and four of them (the subgroups of order
two and six) have one trivial and one nontrivial homomorphism to S2.

Using the trivial homomorphism produces the subfields

E1×S3 = Q[
√

3], E1 = E, E〈ρ〉 = Q[
√
−3,
√

3] = Q[
√

3,
√
−1],

E〈τ〉 = Q[
3
√

2,
√

3], E〈ρτ〉 = Q[ζ2
3
√

2,
√

3], E〈ρ
2τ〉 = Q[ζ

3
√

2,
√

3].

What do the nontrivial homomorphisms look like? Consider, for example, the subgroup
H ′ = 〈τ〉 ⊂ S3 = 〈τ, ρ〉, mapping nontrivially to S2 = 〈σ〉. The corresponding lifted group
H ⊂ G is 〈στ〉. The permutation στ acts as

√
3 ↔ −

√
3 and as ζ ↔ ζ2. Note that

ζ = 1
2(1 +

√
−3), and so ζ ↔ ζ2 is equivalent to

√
−3↔ −

√
−3. Together with

√
3↔ −

√
3,

we learn that στ fixes
√
−1. It also fixes 3

√
2, giving the first of the following three equalities:

E〈στ〉 = Q[
3
√

2,
√
−1], E〈σρτ〉 = Q[ζ2

3
√

2,
√
−1], E〈σρ

2τ〉 = Q[ζ
3
√

2,
√
−1].

The other two are exactly analogous.

Lastly, we have the subgroup H ′ = S3 ⊂ S3, lifted to a subgroup H ⊂ G = S2 × S3 via the
nontrivial homomorphism S3 → S2. This subgroup H can be generated by ρ together with
στ , and:

E〈ρ,στ〉 = Q[
√
−1].

2. (a) Let F ⊂ K ⊂ E be field extensions such that E is the splitting field over F of
some set S of polynomials. Show that then E is the splitting field of some
set of polynomials over K.

If E is the splitting field over F of some set S ⊂ F[x], then E is also the splitting field
over K of the same set S. Indeed, “E is the splitting field over F of S ⊂ F[x]” means
that E is generated by the elements of F together with the roots of elements of S, and
all elements of S split completely over E. But if F ⊂ K ⊂ E, then E is also generated
by the elements of K together with the roots of S.

(b) Show that the converse does not hold. Specifically, find an example where
F ⊂ K is the splitting field of some set of polynomials, and K ⊂ E is the
splitting field of some set of polynomials, but F ⊂ E is not a splitting field of
some set of polynomials.

Take F = Q, K = Q[
√

2], and E = Q[ 4
√

2].
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3. (Lagrange’s Theorem of Natural Irrationalities)
Suppose given a diagram of field extensions

K

F K ∩ L KL E

L

such that F ⊂ K is finite and Galois. Prove that L ⊂ KL is finite and Galois, and
that Gal(KL/L) = Gal(K/(K ∩ L)).

Hints: L ⊂ KL is the splitting field of some separable polynomial. (Why? So
what?) Any F-linear automorphism of KL takes K to itself. (Why? So what?)
Compute kernel and image of Gal(KL/L)→ Gal(K/F).

Since F ⊂ K is finite and Galois, the K is the splitting field over F of some separable
polynomial f(x) ∈ F[x]. In other words, K is generated by F together with all the roots of
f . Thus KL is generated by L together with all the roots of f . In other words, KL is the
splitting field over L of f . Thus L ⊂ KL is finite and Galois.

Any F-linear automorphism of KL will permute the roots of f , and so will take K back to
itself. Thus we find a restriction map Gal(KL/F) → Gal(K/F). Precomposing with the
inclusion Gal(KL/L) ⊂ Gal(KL/F) gives a map

Gal(KL/L)→ Gal(K/F).

We first claim that this map is an injection. Indeed, Gal(KL/L) is a subgroup of the per-
mutation group Sdeg f on the deg f -many roots of f . But if some element of Gal(KL/L)
acts by some permutation of the roots of f , then its image in Gal(K/F) will act by that
same permutation. Said another way: Gal(K/F) is also a subgroup of Sdeg f , and the map
Gal(KL/L)→ Gal(K/F) is an inclusion of subgroups (and hence an injection).

Let G ⊂ Gal(K/F) denote the image of Gal(KL/L)→ Gal(K/F). What is the fixed subfield
KG? In other words, suppose that g ∈ Gal(KL/L) and u ∈ K; when does gu = u? Well, if u
is also in L, then certainly gu = u, and so KG ⊃ K ∩ L. Conversely, suppose that u ∈ K is
fixed by all g ∈ Gal(KL/L). But just since K ⊂ KL and since L ⊂ KL is Galois, we see that
u must live in L.

This shows that KG = K∩L. From the Galois correspondence, we learn that G = Gal(K/K∩
L). But G was the isomorphic image of Gal(KL/L), completing the proof.

4. (a) Suppose that f(x) ∈ F3[x] is a monic irreducible cubic. Show that f must
divide x27 − x. Conversely, show that if f is irreducible and divides x27 − x
then f is either linear or cubic.

Let f(x) ∈ F3[x] be irreducible, and let α a root of f so that we can consider the field
K := F3(α) = F3[x]/(f(x)). If f is cubic, then K is a field of order 33 = 27 and hence
isomorphic to F27. But every element of F27 is a root of x27 − x, so in particular α is
such a root; since f is the minimal polynomial of α, we discover that f divides x27 − x.
On the other hand, suppose that f divides x27 − x. Since F27 is the splitting field of
x27 − x, there must be an injection of fields K ⊂ F27. So [K : F3] = deg f must divide
[F27 : F3] = 3, so f must be either linear or cubic.
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(b) Use part (a) to (quickly!) count the number of monic irreducible cubics over
F3.

From inspecting F27, we see that x27 − x is separable, and so it has no multiplicity in
its factorization. There are three linear factors, corresponding to the three elements of
F3 ⊂ F27:

x27 − x = x(x− 1)(x+ 1)(x24 + x22 + · · ·+ x2 + 1).

All that matters for us is that the last factor has degree 24. We know from part (a) that
all of its irreducible factors are cubic, so it must have exactly eight irreducible factors.
But every monic irreducible cubic appears among its factors. In conclusion, there are
exactly eight monic irreducible cubics over F3.

(c) List all the irreducible monic cubics over F3.

A cubic is irreducible as soon as it has no roots. Note that x3 − x always vanishes on
F3 whereas 1 and x2 + 1 never vanish. Thus the following four cubics never vanish (and
hence are irreducible):

x3 − x± 1, x3 − x± (x2 + 1).

On the other hand, x2 − 1 vanishes at x = ±1 whereas x3 and x3 + x vanish only when
x = 0. Thus the following four cubics never vanish (and hence are irreducible):

x3 ± (x2 − 1), x3 + x± (x2 − 1).

We just wrote down eight distinct irreducible monic cubics. According to part (b), there
are no more.

5. (Artin–Schreier extensions) Let p be a positive prime and a 6= 0 ∈ Fp. Let E =
Fp[α] where α is a root of xp − x − a over Fp. Show that α 7→ α + 1 extends to
an automorphism of E. Conclude that xp − x − a is irreducible and that E is its
splitting field. How does α 7→ α+ 1 relate to the Frobenius endomorphism of E?

If we knew that f(x) := xp − x − a were irreducible over Fp, then to show that α 7→ α + 1
extends to an automorphism of E, it would suffice to show that α+ 1 is also a root of f . But
f(α+ 1) = (α+ 1)p − (α+ 1)− a = αp + 1p − α− 1− a = f(α) = 0. Then we would further
know that [E : F] = p and so Gal(E/F) is cyclic of order p generated by the Frobenius. We
will henceforth write φ for the Frobenius automoprhism.

Let us therefore try to find some power of φ which sends α 7→ α+1. Well, φ(α) = αp = α+a.
Since a ∈ Fp, φ(a) = a. Then, given b ∈ Z, we see that φb(α) = α+ba. Since a ∈ Fp ∼= Z/(p)
is nonzero, we can find b such that ba = 1 ∈ Fp. (b = ap−2 works.) But for this choice of b,
the automorphism φb : E→ E does the trick: it acts by α 7→ α+ 1.

The Galois group Gal(E/Fp) is cyclic of order [E : F] ≤ p. But it contains an automorphism,
namely φb, of order greater at least p. So [E : F] = p, and so xp−x−a is irreducible over Fp.

6. Show that −1 has a square root in the ring Z5 = lim←−Z/(5
n) of 5-adic integers.

Let us suppose that there is such a square root, and try to solve for it. By succeeding, we
will have shown that such a square root exists.

An element of Z5 can be written as a sequence . . . b3b2b1b0 where each “digit” bi is in
{0, 1, 2, 3, 4}. Given any such sequence, we can look at the finite quotient [bn−1 . . . b1b0] ∈
Z/5n, where we read the finite-length sequence bn−1 . . . b1b0 as an integer written in base 5.
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Said more abstractly: to write down an element of Z5 is to write down an element b0 ∈ Z/5,
a lift of that element to an element b1b0 ∈ Z/25, a lift of that element to an element of Z/125,
etc.

To write down a square root of −1 in Z5, we first choose a square root of −1 ≡ 4 in Z/(5).
There are two choices: 2 and 3. Pick either one to call b0.

Now we must lift this choice to a square root of −1 in Z/25. In other words, we must find a
number b1 ∈ Z/5 such that (5b1 + b0)

2 = −1 ∈ Z/25. But

(5b1 + b0)
2 ≡ 10b1b0 + b20 (mod 25)

and b20 = −1 + 5k for some k. So we need to solve

10b1b0 + 5k
?≡ 0 (mod 25)

or equivalently

2b1b0 + k
?≡ 0 (mod 5),

where b0 and k are already chosen and we are solving for b1 ∈ Z/5. But b0 6= 0 is invertible
mod 5, and 5 is odd so 2 is also invertible. Thus there is a unique solution b1.

We now repeat the trick to see how it will generalize. We have chosen a number 5b1+b0 ∈ Z/25
and we wish to lift it to some number 25b2 + 5b1 + b0 ∈ Z/125 such that

(25b2 + 5b1 + b0)
2 ?≡ −1 (mod 125).

But the left-hand side is
50b2b0 + (5b1 + b0)

2 (mod 125).

And we’ve already chosen b0, b1 such that (5b1 + b0)
2 = −1 + 25k for some specific k ∈ Z

(whose value we will only care about mod 5). So we want to solve

50b2b0 + 25k
?≡ 0 (mod 1)25

or equivalently

2b2b0 + k
?≡ 0 (mod 5),

where b0 and k are already chosen and we are solving for b2 ∈ Z/5. There is a unique solution
since 2b0 is invertible mod 5.

In general, at the nth step we want to find some bn ∈ Z/5 such thatÄ
5nbn + (5n−1bn−1 + · · ·+ b0)

ä2 ?≡ −1 (mod 5n+1).

But the left-hand side is

2 · 5n · bn · b0 + (5n−1bn−1 + · · ·+ b0)
2 (mod 5n+1),

and (5n−1bn−1 + · · ·+ b0)
2 = −1 + 5nk for some k. So we are left with finding a bn such that

2 · 5n · bn · b0 + 5nk
?≡ 0 (mod 5n+1)

5



or equivalently
2bnb0 + k (mod 5),

where b0 and k are already chosen and we are solving for bn. Since 2b0 is invertible mod 5,
there is a unique solution.

Remark: Exactly the same argument shows the following. Suppose p is an odd prime and
that a ∈ Z is not divisible by p. Then a is a square in the ring Zp of p-adic integers if and
only if a is a square mod p.

The prime p = 2 is slightly more complicated because, in the above squarings, we kept meeting
a factor of 2. A variation on the proof shows that an odd number a ∈ Z is a square in Z2 if
and only if a is a square mod 8, which happens if and only if a ≡ 1 (mod 8).

Remark: Newton observed that the binomial theorem formally gives

√
a+ x =

√
a

Ç
1 +

Å
1

2

ãÅ
x

a

ã
+

1

2

Å
1

2
· −1

2

ãÅ
x

a

ã2
+

1

3!

Å
1

2
· −1

2
· −3

2

ãÅ
x

a

ã3
+

1

4!

Å
1

2
· −1

2
· −3

2
· −5

2

ãÅ
x

a

ã4
+ . . .

å
with convergence provided |x| < |a|. Note that the coefficient on (xa )n is always a ra-
tional number with denominator just some power of 2. (Indeed, the nth coefficient is

(−1)n−121−2n (2n−2)!
n!(n−1)! , and the ratio of factorials is nothing but the (n − 1)th Catalan num-

ber.) So the partial sums, where you just go up to the nth terms, make sense provided 2 is
invertible.

Let us therefore work in Z5 and take a = 4 and x = −5. Then
√
a = 2 is fine, and the

fractions are fine since 1
2 = . . . 2223 ∈ Z5. Does the sum converge? Yes: when you pass from

the nth partial sum to the (n + 1)th, you add a term of the form m5n+1, where m ∈ Q has
no 5s in its denominator. In other words, you are adding a term like . . . b000 . . . 0 where n+ 1
zeros. So the image of the sum in Z/5n eventually stabilizes for each n, and so the full sum
is valid in Z5.
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