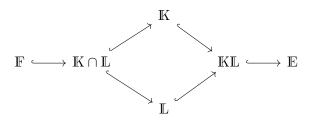
Math 5055: Advanced Algebra II

Assignment 2

due February 1, 2022

Homework should be submitted either as a single PDF attachment to theojf@dal.ca (please include your name in the file name!) or as a single stapled(!) collection to my mailbox in the Chase building.

- 1. Let \mathbb{E} be the splitting field over \mathbb{Q} of $(x^3-2)(x^2-3)$. Compute $\operatorname{Gal}(\mathbb{E}/\mathbb{Q})$, and write down the complete Galois correspondence: list all the subfields of \mathbb{E} and all the subgroups of $\operatorname{Gal}(\mathbb{E}/\mathbb{Q})$ and how they match.
- (a) Let F ⊂ K ⊂ E be field extensions such that E is the splitting field over F of some set S of polynomials. Show that then E is the splitting field of some set of polynomials over K.
 - (b) Show that the converse does not hold. Specifically, find an example where $\mathbb{F} \subset \mathbb{K}$ is the splitting field of some set of polynomials, and $\mathbb{K} \subset \mathbb{E}$ is the splitting field of some set of polynomials, but $\mathbb{F} \subset \mathbb{E}$ is not a splitting field of some set of polynomials.
- 3. (Lagrange's Theorem of Natural Irrationalities) Suppose given a diagram of field extensions



such that $\mathbb{F} \subset \mathbb{K}$ is finite and Galois. Prove that $\mathbb{L} \subset \mathbb{KL}$ is finite and Galois, and that $\operatorname{Gal}(\mathbb{KL}/\mathbb{L}) = \operatorname{Gal}(\mathbb{K}/(\mathbb{K} \cap \mathbb{L})).$

Hints: $\mathbb{L} \subset \mathbb{KL}$ is the splitting field of some separable polynomial. (Why? So what?) Any \mathbb{F} -linear automorphism of \mathbb{KL} takes \mathbb{K} to itself. (Why? So what?) Compute kernel and image of $\operatorname{Gal}(\mathbb{KL}/\mathbb{L}) \to \operatorname{Gal}(\mathbb{K}/\mathbb{F})$.

- (a) Suppose that f(x) ∈ F₃[x] is a monic irreducible cubic. Show that f must divide x²⁷ x. Conversely, show that if f is irreducible and divides x²⁷ x then f is either linear or cubic.
 - (b) Use part (a) to (quickly!) count the number of monic irreducible cubics over \mathbb{F}_3 .
 - (c) List all the irreducible monic cubics over \mathbb{F}_3 . Hints:
 - i. Observe that, as functions $\mathbb{F}_3 \to \mathbb{F}_3$, the polynomial $x^3 x$ always vanishes, whereas the polynomials 1 and $x^2 + 1$ never vanish. Use this to list at least four irreducible cubics over \mathbb{F}_3 .

- ii. Observe that, as functions $\mathbb{F}_3 \to \mathbb{F}_3$, $x^2 1$ vanishes whenever $x \neq 0$, whereas x^3 and $x^3 + x$ vanish only when x = 0. Use this to list at least four irreducible cubics over \mathbb{F}_3 .
- 5. (Artin-Schreier extensions) Let p be a positive prime and $a \neq 0 \in \mathbb{F}_p$. Let $\mathbb{E} = \mathbb{F}_p[\alpha]$ where α is a root of $x^p x a$ over \mathbb{F}_p . Show that $\alpha \mapsto \alpha + 1$ extends to an automorphism of \mathbb{E} . Conclude that $x^p - x - a$ is irreducible and that \mathbb{E} is its splitting field. How does $\alpha \mapsto \alpha + 1$ relate to the Frobenius endomorphism of \mathbb{E} ?
- 6. Show that -1 has a square root in the ring $\mathbb{Z}_5 = \lim \mathbb{Z}/(5^n)$ of 5-adic integers.