Math 5055: Advanced Algebra II

Assignment 4

Solutions

Galois groups

1. Determine the Galois groups of the following polynomials over the fields indi-
cated.

(a)

z* — 5 over Q; over Q[v/5]; over Q[v/—5].

The splitting field of z* — 5 is Q[i, v/5], where of course i = /—1. Thus its Galois group
over @ has order 8. It acts transitively on the four roots v/5,iv/5, —v/5, —iv/5. The only
transitive subgroup of Sy of order 8 is the dihedral group Dy. It acts in the “obvious”
way on the square with vertices {v/5,iv/5, —v/5, —iv/5}.

The polynomial z* — 5 factors over Q[v/5] as (z? — v/5)(2? + +/5). Thus the Galois
group, now of order 4, does not act transitively: rather, it breaks the roots into the two
orbits {£+v/5} and {#iv/5}. It is thus the Klein-4 subgroup of D4 generated by complex
conjugation and the transposition v/5 <> —v/5.

The following products of roots equal v/—5, and so are fixed by the Galois group of z* —5

over Q[v/—5]:
V5-iv5,  —V5-—iV5.

These correspond to two oppositve edges of the square with vertices {(75 ,iv/5, — /5, —i \4/5}
So we are looking for an order-4 subgroup of D4 which may exchange these two edges,
but does not mix them with the other two edges. There is one such subgroup. It is the
Klein-4 subgroup whose nontrivial elements are:

V5 < iv/5 and —%H—i%,
V5 < —iv/5 and — V5 > iv/5,
V5 < —v/5 and iv5 < —iv5

This subgroup acts transitively, and so z* — 5 is irreducible over Q[v—5].
23 —x — 1 over Q; over Q[v/—23].

The polynomial is irreducible over Q: it is cubic, and so to check irreducibility is suffices
to check that it has no roots; it is monic over Z, and so its rational roots are integers;
but if |z| > 2, then |23| > |z| + |1| > |z — 1|, and x = 0,1, —1 are not roots by direct
checking. Since the polynomial is irreducible, the Galois group is a transitive subgroup
of 53.

The discriminant of 23 —x —11is D = —4(—1)% —27(—1)? = —23. This is not a square in
Q, and so the Galois group is S3, which has order 6. Thus the splitting field of 3 —2 — 1
has degree 6 over Q.



The square root of the discriminant A = /D = /=23 is an element of the splitting field
of 3 — 2 — 1. Thus this splitting field has degree 6/2 = 3 over the degree-2 extension
Q[v/—23] of Q. So the Galois group has order 3, and hence is A3 C S3. This is transitive,
and so 3 — z — 1 is irreducible over Q[v/—23].

z* 4+ 323 + 32 — 2 over Q.

Set f(x) = x* + 323 4+ 3z — 2. The resolvent cubic of f is

glx) =2+ 02+ (3-3—-4-(-2)2—3*- (-2)+0-3> =23 + 172 +9.

This has only one real root — its derivative is always positive — and the real root is
strictly between x = —1 and = = 0 (since g(—1) = =9 < 0 and ¢(0) = 9 > 0). In
particular, g has no integral roots, and hence no rational roots since g is monic over Z.
But g is cubic, and so the lack of rational roots implies that it is irreducible over Q.
Since 3 is prime and g has exactly 3 — 2 = 1 real root, the Galois group of g is S3. In
particular, the splitting field of g is a degree-6 extension of Q. Assuming f is irreducible,
it follows that the Galois group of f is Sy.

Is f irreducible? Note that f is quartic, so if it is to factor, then it must factor as either
(quadratic)-(quadratic) or (cubic)-(linear).

In the former case, the Galois group of f would be Z/2 x Z/2 (assuming the two
quadratics factors have different splitting fields; if they have the same splitting field, or
if they factor further, then the Galois group would be smaller than Z /2 x Z/2). But the
splitting field of g is contained within the splitting field of f, and so the Galois group of
f surjects onto the Galois group of g, which has order 6. So (quadratic)-(quadratic) is
ruled out.

What about (cubic)-(linear)? Then f has a rational root, and since f is monic over Z,
that root must be integral. Let’s test some values of f.

f(=2) > |z > 0if 2 < —4,
f(=4)=64—-48-12—-2 >0,
f(=3)=81-81-9-2<0,
f(=2)=16-18-3-2<0,

f(-1)=1-3-3-3<0,

f(0)=04+0+0-2<0,

f)y=143+3-2>0,

fx) > |z[*if 2 > 1.

So f has real roots in the intervals (—4, —3) and (0, 1), but no integer roots, and hence
is irreducible.
(Although we don’t need it, we remark that f cannot have more than two real roots.
There are many ways to see this. One is that g has complex roots, and so f must as
well: the splitting field of f cannot be contained in R, since it contains the splitting
field of g. Another is to use derivatives: f'(z) = 42 + 622 4 3 has only one real root

since f”(z) = 1222 + 6 is always positive, but the derivative of a function has a real root
between any two real roots of the function.)

x° — 6z + 3 over Q.

The polynomial is irreducible by Eisenstein’s criterion, and it has three real roots (con-
firmed with a graphing calculator). So its Galois group is Ss.



2. Which roots of unity are contained in the following fields?

These fields are all quadratic extensions of Q, and so their elements are (either rational or)
quadratic over Q. Suppose £ is a primitive £th root of unity. Then the degree of ¢ is the Euler
totient function ¢(¢) = #(Z/¢)*. By the Chinese remainder theorem, ¢(mn) = ¢(m)p(n) if
m and n are coprime, and an easy calculation shows p(p") = p"~!(p — 1) if p is prime. From
this one quickly finds that the only solutions to ¢(¢) = 2 are ¢ = 3,4, 6.

The fourth roots of unity are £+/—1, and are contained in Q[v/—1]. The third and sixth roots

of unity are :l:% + @ and are contained in Q[v/—3]. Other than these cases, the only roots
of unity in a quadratic extension of @ are +1 (which are in all extensions of Q).

3. Let K C IL be an extension of finite fields, i.e. K =1, and L. = F;» for some prime
power g = p". Show that both the Trace T]}]% : L - K and the Norm N]]II{’ L —-K
are surjective.

The Galois group of K C I is cyclic of order m generated by ¢ : v — v?. Recall that
T =1+¢+¢2+ -+ ¢°™m D where I denotes the identity operator. Consider the 2-
periodic exact sequence
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By Hilbert’s theorem 90, this sequence is exact at the ¢ 1, B entries. But it is a
sequence of finite abelian group, and so by counting the sizes of kernels and images, the
sequence must be exact also at the «5 Il>¢” entries. (To wit: Hilbert’s theorem 90 implies
in particular that #im(I — ¢) = #ker(T). But the first isomorphism says implies that
#im(I — ¢) x #ker(I — ¢) = #IL = #im(T) x #ker(T).)

In particular, the image of T' is precisely the kernel of I — ¢, or in other words the fixed points
of ¢. But the extension is Galois, and so the fixed points of ¢ are precisely K.

Exactly the same argument works for N, thought of as a homomorphism with domain IL*
(obviously 0 = N(0), and so we might as well excuse it from the table). Writing the group
law on L* multiplicatively, we have N = I x ¢ x ¢°2 x --- x ¢°(m~1 . X — I, and we also
consider I + ¢ : IL* — IL.*. Then Hilbert’s theorem 90 says that the sequence

s N B N B

is exact at alternating entries, and hence exact at the other half of the entries by counting.
In other words, the image of N is all of the kernel of I = ¢ : I.* — IL*, i.e. all of the fixed
points of ¢, i.e. all of IK*.

Representations of finite groups

4. Given a group G, let G’ < G denote its commutator subgroup, i.e. the subgroup
generated by elements of the form ghg 'h~!.

(a) Show that G’ is normal in G, and that the quotient G/G’ is abelian.

Indeed: G’ is characteristic, i.e. preserved by all automorphisms of G. Normality is
simply that it is preserved by inner automorphisms.



(b) Show that the one-dimensional representations of G are in bijection with the
one-dimensional representations of G/G’.
For any group A, restriction along the surjection G — G/G’ gives an injection hom(G/G’, A) —
hom(G, A). If A is abelian, then any homomorphism p : G — A will trivialize on &,
and hence factor through G/G’, and so the injection hom(G/G’, A) — hom(G, A) is a
bijection.
But a one-dimensional representation (over a field IF) is nothing but a homomorphism
into GL(1,F) = F*.

5. Suppose that A is a finite abelian group and I is algebraically closed. Show that
a representation of A over I is irreducible if and only if it is 1-dimensional.

One-dimensional vector spaces have no proper sub-vector spaces, and so one-dimensional
representations of any group are automatically irreducible. The only fact to prove is that
all if A is abelian, then all of its irreps are one-dimensional. But this follows from the fact
that, over an algebraically closed field, any finite set of commuting operators (on a finite-
dimensional vector space) has a common eigenvector.

To spell it out, let aq,...,a, be a set of generators for A. Let V be a finite-dimensional
representation of A. We will show that if V' is not one-dimensional, then it has a proper
A-invariant subspace. Abusing notation, write ay,...,a, also for their images in GL(V).
Now, using that IF is algebraically closed, choose an eigenvalue A of a;. The corresponding
eigenspace ker(a;—A\) is nonzero and invariant under ag, . . . , a,, (since the operators commute).
So either V is reducible, in which case we’re done, or a; = A acts by a scalar. Now repeat
for asq, etc., and discover that all of the a;s, and hence all of A, are acting by scalars. But
then V splits as a direct sum of dim(V') many copies of the same scalar representation, and
so dim(V) = 1.

6. Suppose that G is a group, with centre Z(G). Suppose that (V,py : G — GL(V)) is
an irreducible representation of G over an algebraically closed field IF'. Show that
if c € Z(G) then py(c) is a scalar multiple of the identity operator. In other words,
show that p restricts to a homomorphism Z(G) — F*. This homomorphism is
called the central character of the representation (V, py).

Conclude that, if a finite group G admits a faithful irreducible representation,
then its centre must be cyclic.

Since V is irreducible, by Schur’s lemma the only linear endomorphisms of V' which commute
with all of py (G) are scalars. (In general, they are “scalars” in some division ring over I, but
I is algebraically closed.) But Z(G) commutes with all of G, and so py(Z(G)) commutes
with all of py (G).

For the conclusion, note that a finite subgroup of I* is necessarily cyclic. (Since otherwise

there would be too many solutions to an equation of the form 2™ = 1.)

7. Let p be a positive prime, P a p-group (i.e. a group of order a power of p), and
F a field of characteristic p. Prove that the only irreducible representation of P
over I is the trivial one.

Hints: P contains a central element c of order p. Use exercise [6}

Suppose (V, p) is an irrep of P. By the previous exercise, the centre of P acts by scalars. Let
¢ € Z(P) have order p. Then x = p(c) solves 2P = 1. But since we are in characteristic p, the



only solution to z? = 1 is x = 1. In other words, ¢ acts trivially, and so the representation p
factors through P/{c).

In general, if G is a group with a normal subgroup H, and if V' is a representation of G/H,
then V is irreducible over G/H if and only if it is irreducible after pulling back to G. So we
have an irrep of P/(c). This irrep is trivial by induction on the order of P.



