
Math 5055: Advanced Algebra II

Assignment 4

Solutions

Galois groups

1. Determine the Galois groups of the following polynomials over the fields indi-
cated.

(a) x4 − 5 over Q; over Q[
√

5]; over Q[
√
−5].

The splitting field of x4− 5 is Q[i, 4
√

5], where of course i =
√
−1. Thus its Galois group

over Q has order 8. It acts transitively on the four roots 4
√

5, i 4
√

5,− 4
√

5,−i 4
√

5. The only
transitive subgroup of S4 of order 8 is the dihedral group D4. It acts in the “obvious”
way on the square with vertices { 4

√
5, i 4
√

5,− 4
√

5,−i 4
√

5}.
The polynomial x4 − 5 factors over Q[

√
5] as (x2 −

√
5)(x2 +

√
5). Thus the Galois

group, now of order 4, does not act transitively: rather, it breaks the roots into the two
orbits {± 4

√
5} and {±i 4

√
5}. It is thus the Klein-4 subgroup of D4 generated by complex

conjugation and the transposition 4
√

5↔ − 4
√

5.

The following products of roots equal
√
−5, and so are fixed by the Galois group of x4−5

over Q[
√
−5]:

4
√

5 · i 4
√

5, − 4
√

5 · −i 4
√

5.

These correspond to two oppositve edges of the square with vertices { 4
√

5, i 4
√

5,− 4
√

5,−i 4
√

5}.
So we are looking for an order-4 subgroup of D4 which may exchange these two edges,
but does not mix them with the other two edges. There is one such subgroup. It is the
Klein-4 subgroup whose nontrivial elements are:

4
√

5↔ i
4
√

5 and − 4
√

5↔ −i 4
√

5,
4
√

5↔ −i 4
√

5 and − 4
√

5↔ i
4
√

5,
4
√

5↔ − 4
√

5 and i
4
√

5↔ −i 4
√

5

This subgroup acts transitively, and so x4 − 5 is irreducible over Q[
√
−5].

(b) x3 − x− 1 over Q; over Q[
√
−23].

The polynomial is irreducible over Q: it is cubic, and so to check irreducibility is suffices
to check that it has no roots; it is monic over Z, and so its rational roots are integers;
but if |x| ≥ 2, then |x3| > |x| + |1| ≥ |x − 1|, and x = 0, 1,−1 are not roots by direct
checking. Since the polynomial is irreducible, the Galois group is a transitive subgroup
of S3.

The discriminant of x3−x−1 is D = −4(−1)3−27(−1)2 = −23. This is not a square in
Q, and so the Galois group is S3, which has order 6. Thus the splitting field of x3−x−1
has degree 6 over Q.
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The square root of the discriminant ∆ =
√
D =

√
−23 is an element of the splitting field

of x3 − x − 1. Thus this splitting field has degree 6/2 = 3 over the degree-2 extension
Q[
√
−23] of Q. So the Galois group has order 3, and hence is A3 ⊂ S3. This is transitive,

and so x3 − x− 1 is irreducible over Q[
√
−23].

(c) x4 + 3x3 + 3x− 2 over Q.

Set f(x) = x4 + 3x3 + 3x− 2. The resolvent cubic of f is

g(x) = x3 + 0x2 + (3 · 3− 4 · (−2))x− 32 · (−2) + 0− 32 = x3 + 17x+ 9.

This has only one real root — its derivative is always positive — and the real root is
strictly between x = −1 and x = 0 (since g(−1) = −9 < 0 and g(0) = 9 > 0). In
particular, g has no integral roots, and hence no rational roots since g is monic over Z.
But g is cubic, and so the lack of rational roots implies that it is irreducible over Q.

Since 3 is prime and g has exactly 3 − 2 = 1 real root, the Galois group of g is S3. In
particular, the splitting field of g is a degree-6 extension of Q. Assuming f is irreducible,
it follows that the Galois group of f is S4.

Is f irreducible? Note that f is quartic, so if it is to factor, then it must factor as either
(quadratic)·(quadratic) or (cubic)·(linear).

In the former case, the Galois group of f would be Z/2 × Z/2 (assuming the two
quadratics factors have different splitting fields; if they have the same splitting field, or
if they factor further, then the Galois group would be smaller than Z/2×Z/2). But the
splitting field of g is contained within the splitting field of f , and so the Galois group of
f surjects onto the Galois group of g, which has order 6. So (quadratic)·(quadratic) is
ruled out.

What about (cubic)·(linear)? Then f has a rational root, and since f is monic over Z,
that root must be integral. Let’s test some values of f .

f(−x) > |x|3 > 0 if x < −4,

f(−4) = 64− 48− 12− 2 > 0,

f(−3) = 81− 81− 9− 2 < 0,

f(−2) = 16− 18− 3− 2 < 0,

f(−1) = 1− 3− 3− 3 < 0,

f(0) = 0 + 0 + 0− 2 < 0,

f(1) = 1 + 3 + 3− 2 > 0,

f(x) > |x|4 if x > 1.

So f has real roots in the intervals (−4,−3) and (0, 1), but no integer roots, and hence
is irreducible.

(Although we don’t need it, we remark that f cannot have more than two real roots.
There are many ways to see this. One is that g has complex roots, and so f must as
well: the splitting field of f cannot be contained in R, since it contains the splitting
field of g. Another is to use derivatives: f ′(x) = 4x3 + 6x2 + 3 has only one real root
since f ′′(x) = 12x2 + 6 is always positive, but the derivative of a function has a real root
between any two real roots of the function.)

(d) x5 − 6x+ 3 over Q.

The polynomial is irreducible by Eisenstein’s criterion, and it has three real roots (con-
firmed with a graphing calculator). So its Galois group is S5.
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2. Which roots of unity are contained in the following fields?

Q[
√
−1], Q[

√
2], Q[

√
3], Q[

√
5], Q[

√
−2], Q[

√
−3].

These fields are all quadratic extensions of Q, and so their elements are (either rational or)
quadratic over Q. Suppose ξ is a primitive `th root of unity. Then the degree of ξ is the Euler
totient function ϕ(`) = #(Z/`)×. By the Chinese remainder theorem, ϕ(mn) = ϕ(m)ϕ(n) if
m and n are coprime, and an easy calculation shows ϕ(pn) = pn−1(p− 1) if p is prime. From
this one quickly finds that the only solutions to ϕ(`) = 2 are ` = 3, 4, 6.

The fourth roots of unity are ±
√
−1, and are contained in Q[

√
−1]. The third and sixth roots

of unity are ±1
2 ±

√
−3
2 and are contained in Q[

√
−3]. Other than these cases, the only roots

of unity in a quadratic extension of Q are ±1 (which are in all extensions of Q).

3. Let K ⊂ L be an extension of finite fields, i.e. K = Fq and L = Fqm for some prime
power q = pn. Show that both the Trace TLK : L → K and the Norm NL

K : L → K

are surjective.

The Galois group of K ⊂ L is cyclic of order m generated by φ : v 7→ vq. Recall that
T = I + φ + φ◦2 + · · · + φ◦(m−1), where I denotes the identity operator. Consider the 2-
periodic exact sequence

· · · → L
T→ L

I−φ→ L
T→ L

I−φ→ L→ . . . .

By Hilbert’s theorem 90, this sequence is exact at the “
I−φ→ L

T→” entries. But it is a
sequence of finite abelian group, and so by counting the sizes of kernels and images, the

sequence must be exact also at the “
T→ L

I−φ→ ” entries. (To wit: Hilbert’s theorem 90 implies
in particular that # im(I − φ) = # ker(T ). But the first isomorphism says implies that
# im(I − φ)×# ker(I − φ) = #L = # im(T )×# ker(T ).)

In particular, the image of T is precisely the kernel of I−φ, or in other words the fixed points
of φ. But the extension is Galois, and so the fixed points of φ are precisely K.

Exactly the same argument works for N , thought of as a homomorphism with domain L×

(obviously 0 = N(0), and so we might as well excuse it from the table). Writing the group
law on L× multiplicatively, we have N = I × φ× φ◦2× · · · × φ◦(m−1) : L× → L×, and we also
consider I ÷ φ : L× → L×. Then Hilbert’s theorem 90 says that the sequence

· · · → L×
N→ L×

I÷φ→ L×
N→ L×

I÷φ→ L× → . . .

is exact at alternating entries, and hence exact at the other half of the entries by counting.
In other words, the image of N is all of the kernel of I ÷ φ : L× → L×, i.e. all of the fixed
points of φ, i.e. all of K×.

Representations of finite groups

4. Given a group G, let G′ < G denote its commutator subgroup, i.e. the subgroup
generated by elements of the form ghg−1h−1.

(a) Show that G′ is normal in G, and that the quotient G/G′ is abelian.

Indeed: G′ is characteristic, i.e. preserved by all automorphisms of G. Normality is
simply that it is preserved by inner automorphisms.
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(b) Show that the one-dimensional representations of G are in bijection with the
one-dimensional representations of G/G′.

For any groupA, restriction along the surjectionG→ G/G′ gives an injection hom(G/G′, A)→
hom(G,A). If A is abelian, then any homomorphism ρ : G → A will trivialize on G′,
and hence factor through G/G′, and so the injection hom(G/G′, A) → hom(G,A) is a
bijection.

But a one-dimensional representation (over a field F) is nothing but a homomorphism
into GL(1,F) = F×.

5. Suppose that A is a finite abelian group and F is algebraically closed. Show that
a representation of A over F is irreducible if and only if it is 1-dimensional.

One-dimensional vector spaces have no proper sub-vector spaces, and so one-dimensional
representations of any group are automatically irreducible. The only fact to prove is that
all if A is abelian, then all of its irreps are one-dimensional. But this follows from the fact
that, over an algebraically closed field, any finite set of commuting operators (on a finite-
dimensional vector space) has a common eigenvector.

To spell it out, let a1, . . . , an be a set of generators for A. Let V be a finite-dimensional
representation of A. We will show that if V is not one-dimensional, then it has a proper
A-invariant subspace. Abusing notation, write a1, . . . , an also for their images in GL(V ).
Now, using that F is algebraically closed, choose an eigenvalue λ of a1. The corresponding
eigenspace ker(a1−λ) is nonzero and invariant under a2, . . . , an (since the operators commute).
So either V is reducible, in which case we’re done, or a1 = λ acts by a scalar. Now repeat
for a2, etc., and discover that all of the ais, and hence all of A, are acting by scalars. But
then V splits as a direct sum of dim(V ) many copies of the same scalar representation, and
so dim(V ) = 1.

6. Suppose that G is a group, with centre Z(G). Suppose that (V, ρV : G→ GL(V )) is
an irreducible representation of G over an algebraically closed field F. Show that
if c ∈ Z(G) then ρV (c) is a scalar multiple of the identity operator. In other words,
show that ρ restricts to a homomorphism Z(G) → F×. This homomorphism is
called the central character of the representation (V, ρV ).

Conclude that, if a finite group G admits a faithful irreducible representation,
then its centre must be cyclic.

Since V is irreducible, by Schur’s lemma the only linear endomorphisms of V which commute
with all of ρV (G) are scalars. (In general, they are “scalars” in some division ring over F, but
F is algebraically closed.) But Z(G) commutes with all of G, and so ρV (Z(G)) commutes
with all of ρV (G).

For the conclusion, note that a finite subgroup of F× is necessarily cyclic. (Since otherwise
there would be too many solutions to an equation of the form xn = 1.)

7. Let p be a positive prime, P a p-group (i.e. a group of order a power of p), and
F a field of characteristic p. Prove that the only irreducible representation of P
over F is the trivial one.

Hints: P contains a central element c of order p. Use exercise 6.

Suppose (V, ρ) is an irrep of P . By the previous exercise, the centre of P acts by scalars. Let
c ∈ Z(P ) have order p. Then x = ρ(c) solves xp = 1. But since we are in characteristic p, the
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only solution to xp = 1 is x = 1. In other words, c acts trivially, and so the representation ρ
factors through P/〈c〉.
In general, if G is a group with a normal subgroup H, and if V is a representation of G/H,
then V is irreducible over G/H if and only if it is irreducible after pulling back to G. So we
have an irrep of P/〈c〉. This irrep is trivial by induction on the order of P .
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