
Math 5055: Advanced Algebra II

Assignment 5

Solutions

1. Show that the character table of a product of finite groups is the tensor product
of their character tables.

Suppose that G1, G2 are finite groups and I1, I2 are irreps thereof. Then I1 ⊗ I2 is naturally
a representation of G1 ×G2. The character is

χI1⊗I2((g1, g2)) = trI1⊗I2(g1 ⊗ g2) = trI1(g1) trI2(g2) = χI1(g1)χI2(g2).

We claim that I1⊗I2 is irreducible, and that different choices for I1, I2 lead to different irreps.
To show this, it suffices to show that

〈χI1⊗I2 , χJ1⊗J2〉 =

®
1, I1 ∼= J1 and I2 ∼= J2

0, otherwise.

But note that the conjugacy classes in G1×G2 are precisely the products of conjugacy classes
(in other words, (g1, g2) is conjugate to (h1, h2) if and only if g1 is conjugate to h1 and g2 is
conjugate to h2). From this one finds that

〈χI1⊗I2 , χJ1⊗J2〉 = 〈χI1 , χJ1〉〈χI2 , χJ2〉.

So the irreps of G1×G2 are precisely the tensor products of irreps. In other words, the rows of
the character table of G1×G2 are indexed by pairs of rows from the two character tables. We
already remarked that the conjugacy classes in G1×G2 are precisely the products of conjugacy
classes; in other words, the columns of the character table of G1 × G2 are indexed by pairs
of columns from the two character tables. And the formula χI1⊗I2((g1, g2)) = χI1(g1)χI2(g2)
shows that the entries are the products of entries.

This is precisely the definition of tensor product of matrices.

2. Calculate the character table of the alternating group A5.

An element of A5 is either trivial, a 3-cycle, a 5-cycle, or a product of two 2-cycles. Any two
3-cycles are conjugate: indeed, to conjugate (123)(4)(5) to (abc)(d)(e), we could use either
of the two permutations [12345] 7→ [abcde] or [12345] 7→ [abced], and one of these is an even
permutation. Similarly, any two products of two 2-cycles are conjugate. For example, to
take (12)(34)(5) to (ab)(cd)(e), we could use either [12345] 7→ [abcde] or [12345] 7→ [abdce],
and one of these is even. But there are two conjugacy classes of 5-cycles. To see this, note
that a 5-cycle is always of the form (1abcd) for a unique permutation [abcd] of [2345], and
that permutation is either even or odd. If it is even, then (1abcd) is conjugate to (12345)
via said even permutation. So it suffices to show that (12345) is not conjugate to (12354)
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by an even permutation. Well, any the permutations conjugating (12345) to (12354) are
[12345] 7→ [12354], [23541], [35412], [54123], [41235], and these are all odd.

Choosing representatives for our conjugacy classes, and immediately recording the trivial
representation, we have:

class 1 (123) (12)(34) (12345) (12354)
#[g] 1 20 15 12 12

χ1 1 1 1 1 1

There are four more irreducible characters.

A5 is simple, so in particular there are no other 1D representations. To make progress, we
should look for some other interesting representations of A5. Well, we know one of them: the
permutation representation, with character

class 1 (123) (12)(34) (12345) (12354)
#[g] 1 20 15 12 12

χperm 5 2 1 0 0

We calculate

‖χperm‖2 =
1

#G

∑
[g]

#[g] · χperm(g)2 =
1

60
(1 · 52 + 20 · 22 + 15 · 12 + 12 · 02 + 12 · 02) = 2.

So χperm is a sum of two inequivalent irreps. One of them is the trivial representation, and
the other is χ2 = χperm − χ1.

class 1 (123) (12)(34) (12345) (12354)
#[g] 1 20 15 12 12

χ2 4 1 0 −1 −1

The 24 elements of order 5 in A5 sort themselves into 6 Sylow 5-subgroups. (Each one contains
two elements from each of the two conjugacy classes.) The conjugation action of A5 on that
set of size 6 has character ψ given by

class 1 (123) (12)(34) (12345) (12354)
#[g] 1 20 15 12 12

ψ 6 0 2 1 1

with

‖ψ‖2 =
1

60
(1 · 62 + 15 · 22 + 12 · 12 + 12 · 12) = 2.

Since this is a permutation representation, it contains a trivial subrep, and we find that
χ3 = ψ − χ1 is irreducible.

class 1 (123) (12)(34) (12345) (12354)
#[g] 1 20 15 12 12

χ3 5 −1 1 0 0

We need two more irreps, χ4 and χ5. Note that 60 = 12 + 42 + 52 + χ4(1)2 + χ5(1)2. And
χ(1) is a dimension hence a nonnegative integer, so χ4(1) = χ5(1) = 3. In other words, there
are two 3-dimensional irreps of A5.
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We can work out what χ4 + χ5 is from using the fact that

χCA5 = χ1 + 4χ2 + 5χ3 + 3χ4 + 3χ5,

or in other words χ4 + χ5 = 1
3(χCA5 − χ1 − 4χ2 − 5χ3). We find:

class 1 (123) (12)(34) (12345) (12354)
#[g] 1 20 15 12 12

χ4 + χ5 6 0 −2 1 1

Let’s suppose that one of these characters, χ4, say, is

class 1 (123) (12)(34) (12345) (12354)
#[g] 1 20 15 12 12

χ4 3 x y z w

Then χ4 is orthogonal to each of χ1, χ2, χ3, and hence with any linear combination thereof.

Orthogonality with χ3 gives
0 = 15 + 20 · −x+ 15 · y,

whereas orthogonality with χ1 + χ2 gives

0 = 15 + 20 · 2x+ 15 · y.

Together these equations imply x = 0 and y = −1. Now orthogonality of χ4 with χ1 gives

0 = 3 + 20 · 0 + 15 · −1 + 12 · z + 12 · w

and so z + w = 1.

In other words, our character table so far looks like

class 1 (123) (12)(34) (12345) (12354)
#[g] 1 20 15 12 12

χ1 1 1 1 1 1
χ2 4 1 0 −1 −1
χ3 5 −1 1 0 0
χ4 3 0 −1 z 1− z
χ5 3 0 −1 1− z z

Note that (12345)−1 = (15432) is conjugate to (12345). It follows that all characters are real.
Then orthogonality of χ4 and χ5 gives the equation

0 = 9 + 15 + 24z(1− z).

Writing φ = 1+
√
5

2 for the Golden Ratio, we find that z = φ or φ−1 = 1 − φ. Thus the final
answer is

class 1 (123) (12)(34) (12345) (12354)
#[g] 1 20 15 12 12

χ1 1 1 1 1 1
χ2 4 1 0 −1 −1
χ3 5 −1 1 0 0
χ4 3 0 −1 φ φ−1

χ5 3 0 −1 φ−1 φ
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Remark: Note that χ4 and χ5 are Galois conjugate. They are also obviously exchanged by
the outer automorphism of A5 given by conjugating by the odd permutation (1)(2)(3)(45). So
for all intents and purposes they are “the same” — if you and I each have a group abstractly
isomorphic to A5, there’s no way to decide which irrep is χ4 and which is χ5.

What actually is this 3-dimensional irrep?

Consider the regular dodecahedron. Let G denote its group of rotational symmetries. Then
#G = 60: you can rotate any face to any other face (12 choices) and then rotate that face (5
choices). There are five ways to inscribe a cube into a dodecahedron, and the 60 rotational
symmetries transitively permute those five inscribed cubes. It is not too hard to show directly
that the map G→ S5 given by permuting those five cubes is actually an isomorphism G ∼= A5.

On the other hand, by construction G acts on the R3 containing the dodecahedron. So this
affords a 3D representation of G ∼= A5, and it turns out to be either χ4 or χ5 depending on
which ordering of the cubes you use to build your isomorphism.

3. Let G be a finite group of order n.

(a) Show that the function g 7→ gm is a bijection on G if and only if m is coprime
to n, and that it only depends on the value of m modulo n.

The order of every element divides n. If m and n share a prime p as a common factor,
then g 7→ gm will take all elements of order p to 1; there does exist an element of order p,
and so that map is not a bijection. If m and n are coprime, then we can solve mm′ = 1
(mod n), and g 7→ gm will be inverse to the map g 7→ gm

′
.

(b) Suppose that m is coprime to n. Give an example to show that g 7→ gm

is typically not a group homomorphism. Nevertheless, show that gm and g
always have the same order.

For example, −1 is coprime to every number. But (gh)−1 = h−1g−1 6= g−1h−1 unless g
and h commute.

If g has order o, then (gm)o = gmo = gom = 1m = 1, so gm has order dividing o. But by
using the explicit inverse map from (a), we see that o divides the order of gm.

(c) Show that the character table of G takes values in the cyclotomic field Q(ξ),
where ξ = n

√
1 is a primitive nth root of unity.

If χ is a character and g ∈ G, then χ(g) is a sum of eigenvalues of g. Since g has order
dividing n, these eigenvalues are all powers of ξ.

(d) How does the Galois group Gal(Q(ξ)/Q) relate to the set of numbers m such
that m is coprime to n?

Gal(Q(ξ)/Q) = (Z/n)× is precisely the set of classes modulo n of numbers m such that
m is coprime to n. The class m ∈ Gal(Q(ξ)/Q) acts by ξ 7→ ξm.

(e) Let χ be a character of G. How does χ(gm) relate to χ(g)?

The eigenvalues of gm are the mth powers of eigenvalues of g. In other words, the images
of said eigenvalues under the Galois automorphism m ∈ Gal(Q(ξ)/Q). So χ(gm) is the
image of χ(g) under that Galois automorphism.

(f) Let g ∈ G be an arbitrary element. Show that the following statements are
equivalent:

i. χ(g) ∈ Q for every character χ.

ii. χ(g) ∈ Z for every character χ.
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iii. g is conjugate to gm for every number m coprime to n.

i. and ii. are equivalent χ(g) is a sum of roots of unity and hence an algebraic integer.

Suppose that g is conjugate to gm. Then χ(g) = χ(gm) for every character χ, but the
latter is a Galois conjugate of the former. Since the extension Q ⊂ Q(ξ) is Galois, we
learn that χ(g) ∈ Q. Thus iii. implies i.

Conversely, if χ(g) ∈ Q, then χ(g) = χ(gm). If this holds for every character χ, then
the conjugacy classes of g and gm must be equal, since not just the rows but also the
columns of the character table are orthogonal. Thus i. implies iii.

(g) Show that condition iii above, and hence also the other two conditions, holds
for example when G = Sn is a symmetric group.

The order of Sn is n!. If m is coprime to n!, then in particular it is coprime to every
k ≤ n. It follows that for any permutation g ∈ Sn, the cycle structures of g and gm are
the same. But conjugacy classes in Sn are determined by cycle structures.

4. Let p be an odd prime, and P a nonabelian group of order p3. Describe the
character table of P , and show that it does not depend on which group you use.

We will use the following:

Lemma: Let G be a nonabelian group, with centre Z(G). Then G/Z(G) is not cyclic.

Proof: Suppose that G/Z(G) is cyclic of order n, and choose an element x ∈ G that maps
to a generator of G/Z(G). Then the elements of G are all of the form zxi for i = 1, . . . , n− 1
and z ∈ Z(G). But these all commute, violating the requirement that G was nonabelian.

Now, the exercise asks about the p-group P . Every p-group has a nontrivial centre. So the
quotient P/Z(P ) has order either p or p2, and so is either Z/p or Z/(p2) or (Z/p)2. The first
two are ruled out by the lemma. Thus Z(P ) has order p.

Since (Z/p)2 is abelian, the commutator subgroup P ′ must be contained in ker(P → (Z/p)2) =
Z(P ) ∼= Z/p. The commutator subgroup cannot be trivial since P is not itself abelian. So
P ′ = Z(P ) ∼= Z/p.
Thus the 1D representations of P are precisely the 1D representations of (Z/p)2. There are
p2 many of these.

To count how many irreps we need, we instead count conjugacy classes. Pick x, y ∈ (Z/p)2,
lift them to x̃, ỹ ∈ P , and compute [x̃, ỹ] ∈ Z(P ) ∼= Z/p. Then [x̃, ỹ] is independent of
the choice of lifts and so we will simply write it as [x, y]. Moreover, this commutator map
[, ] : (Z/p)2 → Z/p is nontrivial and bilinear. It follows that for any z ∈ Z(P ) and x̃ ∈ P
noncentral, there exists ỹ such that [x, y] = z. But then ỹ−1x̃ỹ = zx̃. In other words, for any
nontrivial element of (Z/p)2, all of its lifts are conjugate. A central element is not conjugate
to anything other than itself, and so we find that P has: p conjugacy classes of order 1,
namely the central elements; p2 − 1 conjugacy classes of order p.

So there are p2 + p− 1 total irreps of P . We’ve written p2 of them. For the others, the centre
acts nontrivially. By Schur’s lemma (see last homework), any central element will act by a
scalar. Suppose that a generator z of Z(P ) acts by ξ, some nontrivial pth root of unity. If
x ∈ P is noncentral, then tr(x) = tr(zx), since x and zx are conjugate, but z is just the scalar
matrix ξ, so tr(x) = ξ tr(x), and so tr(x) = 0.

The last thing to remark is that if we have an irrep where z ∈ Z takes value ξ, then we have
an irrep where z takes value any Galois conjugate of ξ. But the Galois conjugates of ξ are

5



the powers of ξ. So all of these non-one-dimensional characters have the same dimension d.
This d must solve (p− 1)d2 + p2 = p3, or in other words d = p.

So the character table of P looks as follows. There are p2 one-dimensional characters, indexed
by pairs (α, β) ∈ (Z/p)2. These characters take value 1 on all p central elements. The other
p2 − 1 conjugacy classes are indexed by pairs (a, b) 6= (0, 0) ∈ (Z/p)2, and χα,β(a, b) =
exp
(
2πi
p (αa + βb)

)
. Finally, there are p − 1 irreducible characters, indexed by ζ 6= 0 ∈ Z/p.

These characters vanish on noncentral elements in P , and on the central elements z ∈ Z(P ) ∼=
Z/p, they take the values χζ(z) = d exp

(
2πi
p ζz

)
.
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